Governing field: \[M_{01} = \mathbb{Q}\left(\zeta_8\right)\]
Governing field: \[M_{02} = \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}\right)\]
Governing field: \[M_{03} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}\right)\] - or - \[M_{03} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}\right)\] where: \[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\]
Same governing field as \(a_{03}\).
Governing field:
\[M_{04} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}\right)\]
- or -
\[M_{04} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}\right)\]
where:
\[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\]
Governing field: \[M_{05} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}, \sqrt{- \frac{8282936156772053 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{6}}{562949953421312} - \frac{336382584949535 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{9}{2}}}{2199023255552} - \frac{6445823996745319 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{4}}{140737488355328} - \frac{4638634719581101 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{2}}{70368744177664} - \frac{5142889464378747 \sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}}{1125899906842624} + \frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328} + \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{3}{2}}}{281474976710656} + \frac{615248862392953 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{3}}{8796093022208} + \frac{8240373942248553 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{7}{2}}}{35184372088832} + \frac{8030384673908857 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{5}}{562949953421312} + \frac{4981425151744809 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{7}}{18014398509481984} + \frac{1676680829315919 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{15}{2}}}{9007199254740992}}\right)\] - or - \[M_{05} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)\] where: \[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\] and \[\beta = - \frac{8282936156772053 \alpha^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567 \alpha^{6}}{562949953421312} - \frac{336382584949535 \alpha^{\frac{9}{2}}}{2199023255552} - \frac{6445823996745319 \alpha^{4}}{140737488355328} - \frac{4638634719581101 \alpha^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \alpha^{2}}{70368744177664} - \frac{5142889464378747 \sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{\alpha}}{1125899906842624} + \frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328} + \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \alpha^{\frac{3}{2}}}{281474976710656} + \frac{615248862392953 \alpha^{3}}{8796093022208} + \frac{8240373942248553 \alpha^{\frac{7}{2}}}{35184372088832} + \frac{8030384673908857 \alpha^{5}}{562949953421312} + \frac{4981425151744809 \alpha^{7}}{18014398509481984} + \frac{1676680829315919 \alpha^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859 \alpha^{\frac{15}{2}}}{9007199254740992}\]
Same governing field as \(a_{05}\).
Governing field:
\[M_{06} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}, \sqrt{-
\frac{8282936156772053 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567
\left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{6}}{562949953421312} - \frac{336382584949535 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{9}{2}}}{2199023255552} - \frac{6445823996745319 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{4}}{140737488355328} - \frac{4638634719581101 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{2}}{70368744177664} - \frac{5142889464378747
\sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}}{1125899906842624} +
\frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328}
+ \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \left(- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{3}{2}}}{281474976710656} + \frac{615248862392953 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{3}}{8796093022208} + \frac{8240373942248553 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{7}{2}}}{35184372088832} + \frac{8030384673908857 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{5}}{562949953421312} + \frac{4981425151744809 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{7}}{18014398509481984} + \frac{1676680829315919 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{15}{2}}}{9007199254740992}}\right)\]
- or -
\[M_{06} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)\]
where:
\[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\]
and
\[\beta = - \frac{8282936156772053 \alpha^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567
\alpha^{6}}{562949953421312} - \frac{336382584949535 \alpha^{\frac{9}{2}}}{2199023255552} -
\frac{6445823996745319 \alpha^{4}}{140737488355328} - \frac{4638634719581101
\alpha^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \alpha^{2}}{70368744177664} -
\frac{5142889464378747 \sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{\alpha}}{1125899906842624} +
\frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328}
+ \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \alpha^{\frac{3}{2}}}{281474976710656} +
\frac{615248862392953 \alpha^{3}}{8796093022208} + \frac{8240373942248553 \alpha^{\frac{7}{2}}}{35184372088832}
+ \frac{8030384673908857 \alpha^{5}}{562949953421312} + \frac{4981425151744809 \alpha^{7}}{18014398509481984} +
\frac{1676680829315919 \alpha^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859
\alpha^{\frac{15}{2}}}{9007199254740992}\]
Same governing field as \(a_{05}\).
Governing field:
\[M_{07} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}, \sqrt{-
\frac{8282936156772053 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567
\left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{6}}{562949953421312} - \frac{336382584949535 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{9}{2}}}{2199023255552} - \frac{6445823996745319 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{4}}{140737488355328} - \frac{4638634719581101 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{2}}{70368744177664} - \frac{5142889464378747
\sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}}{1125899906842624} +
\frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328}
+ \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \left(- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{3}{2}}}{281474976710656} + \frac{615248862392953 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{3}}{8796093022208} + \frac{8240373942248553 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{7}{2}}}{35184372088832} + \frac{8030384673908857 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{5}}{562949953421312} + \frac{4981425151744809 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{7}}{18014398509481984} + \frac{1676680829315919 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{15}{2}}}{9007199254740992}}\right)\]
- or -
\[M_{07} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)\]
where:
\[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\]
and
\[\beta = - \frac{8282936156772053 \alpha^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567
\alpha^{6}}{562949953421312} - \frac{336382584949535 \alpha^{\frac{9}{2}}}{2199023255552} -
\frac{6445823996745319 \alpha^{4}}{140737488355328} - \frac{4638634719581101
\alpha^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \alpha^{2}}{70368744177664} -
\frac{5142889464378747 \sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{\alpha}}{1125899906842624} +
\frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328}
+ \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \alpha^{\frac{3}{2}}}{281474976710656} +
\frac{615248862392953 \alpha^{3}}{8796093022208} + \frac{8240373942248553 \alpha^{\frac{7}{2}}}{35184372088832}
+ \frac{8030384673908857 \alpha^{5}}{562949953421312} + \frac{4981425151744809 \alpha^{7}}{18014398509481984} +
\frac{1676680829315919 \alpha^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859
\alpha^{\frac{15}{2}}}{9007199254740992}\]
Same governing field as \(a_{05}\).
Governing field:
\[M_{08} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}, \sqrt{-
\frac{8282936156772053 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567
\left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{6}}{562949953421312} - \frac{336382584949535 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{9}{2}}}{2199023255552} - \frac{6445823996745319 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{4}}{140737488355328} - \frac{4638634719581101 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{2}}{70368744177664} - \frac{5142889464378747
\sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}}{1125899906842624} +
\frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328}
+ \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \left(- \frac{3136435454775881
\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083
\cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{3}{2}}}{281474976710656} + \frac{615248862392953 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{3}}{8796093022208} + \frac{8240373942248553 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{7}{2}}}{35184372088832} + \frac{8030384673908857 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{5}}{562949953421312} + \frac{4981425151744809 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{7}}{18014398509481984} + \frac{1676680829315919 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859 \left(-
\frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} +
\frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\right)^{\frac{15}{2}}}{9007199254740992}}\right)\]
- or -
\[M_{08} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)\]
where:
\[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285
\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} +
\frac{3582104167901087}{281474976710656}\]
and
\[\beta = - \frac{8282936156772053 \alpha^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567
\alpha^{6}}{562949953421312} - \frac{336382584949535 \alpha^{\frac{9}{2}}}{2199023255552} -
\frac{6445823996745319 \alpha^{4}}{140737488355328} - \frac{4638634719581101
\alpha^{\frac{5}{2}}}{35184372088832} - \frac{2954723016803317 \alpha^{2}}{70368744177664} -
\frac{5142889464378747 \sqrt[4]{2}}{140737488355328} - \frac{4198844765367981 \sqrt{\alpha}}{1125899906842624} +
\frac{3450571136356681 \sqrt{2}}{281474976710656} + \frac{6022015868546055 \cdot \sqrt[4]{2}^3}{140737488355328}
+ \frac{5763554133419461}{70368744177664} + \frac{7633450872164841 \alpha^{\frac{3}{2}}}{281474976710656} +
\frac{615248862392953 \alpha^{3}}{8796093022208} + \frac{8240373942248553 \alpha^{\frac{7}{2}}}{35184372088832}
+ \frac{8030384673908857 \alpha^{5}}{562949953421312} + \frac{4981425151744809 \alpha^{7}}{18014398509481984} +
\frac{1676680829315919 \alpha^{\frac{11}{2}}}{35184372088832} + \frac{8299866982438859
\alpha^{\frac{15}{2}}}{9007199254740992}\]
Governing field: \[M_{08} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}, \sqrt{- \frac{105347359704573 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{7}}{9007199254740992} - \frac{6998074608946635 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{5}}{9007199254740992} - \frac{5920145374826629 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{3}}{1125899906842624} - \frac{5641391423669567 \sqrt[4]{2}}{281474976710656} + \frac{1892518063068637 \sqrt{2}}{281474976710656} + \frac{6605731837972057 \cdot \sqrt[4]{2}^3}{281474976710656} + \frac{6318487279300541}{140737488355328} + \frac{4398252267665923 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{2}}{2251799813685248} + \frac{6781736280981887 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{4}}{2251799813685248} + \frac{2182195308166155 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{6}}{18014398509481984}}\right)\] - or - \[M_{08} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)\] where: \[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\] and \[\beta = - \frac{105347359704573 \alpha^{7}}{9007199254740992} - \frac{6998074608946635 \alpha^{5}}{9007199254740992} - \frac{5920145374826629 \alpha^{3}}{1125899906842624} - \frac{5641391423669567 \sqrt[4]{2}}{281474976710656} + \frac{1892518063068637 \sqrt{2}}{281474976710656} + \frac{6605731837972057 \cdot \sqrt[4]{2}^3}{281474976710656} + \frac{6318487279300541}{140737488355328} + \frac{4398252267665923 \alpha^{2}}{2251799813685248} + \frac{6781736280981887 \alpha^{4}}{2251799813685248} + \frac{2182195308166155 \alpha^{6}}{18014398509481984}\]
Governing field: \[M_{08} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}, \sqrt{- \frac{8834128592369193 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{15}{2}}}{18014398509481984} - \frac{5764005538121637 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{7}}{18014398509481984} - \frac{6525657542771441 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{11}{2}}}{281474976710656} - \frac{8271178638947881 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{5}}{562949953421312} - \frac{6081987607676345 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{7}{2}}}{70368744177664} - \frac{6598671728459543 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{3}}{140737488355328} - \frac{1208437681968305 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{3}{2}}}{140737488355328} - \frac{183920253122025}{4398046511104} - \frac{6079543723614321 \cdot \sqrt[4]{2}^3}{281474976710656} - \frac{6967068354798893 \sqrt{2}}{1125899906842624} - \frac{1068523219860669 \sqrt{- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}}}{2251799813685248} + \frac{1298004773107437 \sqrt[4]{2}}{70368744177664} + \frac{1958567319150421 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{2}}{281474976710656} + \frac{463099233299539 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{5}{2}}}{17592186044416} + \frac{1458843417828589 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{4}}{35184372088832} + \frac{4742512389557653 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{9}{2}}}{70368744177664} + \frac{5197763479709557 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{6}}{2251799813685248} + \frac{507219318934741 \left(- \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\right)^{\frac{13}{2}}}{140737488355328}}\right)\] - or - \[M_{08} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)\] where: \[\alpha = - \frac{3136435454775881 \sqrt[4]{2}}{562949953421312} + \frac{4208721080340285 \sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}\] and \[\beta = - \frac{8834128592369193 \alpha^{\frac{15}{2}}}{18014398509481984} - \frac{5764005538121637 \alpha^{7}}{18014398509481984} - \frac{6525657542771441 \alpha^{\frac{11}{2}}}{281474976710656} - \frac{8271178638947881 \alpha^{5}}{562949953421312} - \frac{6081987607676345 \alpha^{\frac{7}{2}}}{70368744177664} - \frac{6598671728459543 \alpha^{3}}{140737488355328} - \frac{1208437681968305 \alpha^{\frac{3}{2}}}{140737488355328} - \frac{183920253122025}{4398046511104} - \frac{6079543723614321 \cdot \sqrt[4]{2}^3}{281474976710656} - \frac{6967068354798893 \sqrt{2}}{1125899906842624} - \frac{1068523219860669 \sqrt{\alpha}}{2251799813685248} + \frac{1298004773107437 \sqrt[4]{2}}{70368744177664} + \frac{1958567319150421 \alpha^{2}}{281474976710656} + \frac{463099233299539 \alpha^{\frac{5}{2}}}{17592186044416} + \frac{1458843417828589 \alpha^{4}}{35184372088832} + \frac{4742512389557653 \alpha^{\frac{9}{2}}}{70368744177664} + \frac{5197763479709557 \alpha^{6}}{2251799813685248} + \frac{507219318934741 \alpha^{\frac{13}{2}}}{140737488355328}\]
Governing field: \[M_{11} = \mathbb{Q}\left(\zeta_{16}\right)\]
Governing field: \[M_{10} = \mathbb{Q}\left(\zeta_8\right)\]
Governing field: \[M_{20} = \mathbb{Q}\left(\zeta_8, \sqrt{1+i}\right)\]
Governing field: \[M_{30} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}}\right)\] - or - \[M_{30} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{\alpha}\right)\] where: \[\alpha = -4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\]
Same governing field as \(a_{30}\).
Governing field:
\[M_{40} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}}\right)\]
- or -
\[M_{40} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{\alpha}\right)\]
where:
\[\alpha = -4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} -
\frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 +
i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\]
Governing field: \[M_{50} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}}, \sqrt{\frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\right)^{\frac{11}{2}}}{4} - \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\right)^{\frac{7}{2}}}{4} - \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}} + \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\right)^{\frac{3}{2}}}{4} - \frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\right)^{\frac{15}{2}}}{4}}\right)\] - or - \[M_{50} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{\alpha}, \sqrt{\beta}\right)\] where: \[\alpha = -4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\] and \[\beta = \frac{\alpha^{\frac{11}{2}}}{4} - \frac{7 \alpha^{\frac{7}{2}}}{4} - \sqrt{\alpha} + \frac{7 \alpha^{\frac{3}{2}}}{4} - \frac{\alpha^{\frac{15}{2}}}{4}\]
Same governing field as \(a_{50}\).
Governing field:
\[M_{60} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}}, \sqrt{\frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5
\left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{11}{2}}}{4} - \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{7}{2}}}{4} - \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} -
\frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}} + \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1
+ i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{3}{2}}}{4} - \frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{15}{2}}}{4}}\right)\]
- or -
\[M_{60} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{\alpha}, \sqrt{\beta}\right)\]
where:
\[\alpha = -4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} -
\frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 +
i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\]
and
\[\beta = \frac{\alpha^{\frac{11}{2}}}{4} - \frac{7 \alpha^{\frac{7}{2}}}{4} - \sqrt{\alpha} + \frac{7
\alpha^{\frac{3}{2}}}{4} - \frac{\alpha^{\frac{15}{2}}}{4}\]
Same governing field as \(a_{50}\).
Governing field:
\[M_{70} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}}, \sqrt{\frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5
\left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{11}{2}}}{4} - \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{7}{2}}}{4} - \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} -
\frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}} + \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1
+ i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{3}{2}}}{4} - \frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{15}{2}}}{4}}\right)\]
- or -
\[M_{70} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{\alpha}, \sqrt{\beta}\right)\]
where:
\[\alpha = -4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} -
\frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 +
i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\]
and
\[\beta = \frac{\alpha^{\frac{11}{2}}}{4} - \frac{7 \alpha^{\frac{7}{2}}}{4} - \sqrt{\alpha} + \frac{7
\alpha^{\frac{3}{2}}}{4} - \frac{\alpha^{\frac{15}{2}}}{4}\]
Same governing field as \(a_{50}\).
Governing field:
\[M_{80} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}}, \sqrt{\frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5
\left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{11}{2}}}{4} - \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{7}{2}}}{4} - \sqrt{-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} -
\frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}} + \frac{7 \left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1
+ i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{3}{2}}}{4} - \frac{\left(-4 - \frac{65 i}{16} - \frac{31 \sqrt{1 +
i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} - \frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 +
i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 + i\right)^{2}}{16} + \frac{27 \left(1 +
i\right)^{\frac{3}{2}}}{16}\right)^{\frac{15}{2}}}{4}}\right)\]
- or -
\[M_{80} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt{1+i}, \sqrt{\alpha}, \sqrt{\beta}\right)\]
where:
\[\alpha = -4 - \frac{65 i}{16} - \frac{31 \sqrt{1 + i}}{16} - \frac{5 \left(1 + i\right)^{\frac{5}{2}}}{16} -
\frac{3 \left(1 + i\right)^{3}}{16} + \frac{\left(1 + i\right)^{\frac{7}{2}}}{16} + \frac{11 \left(1 +
i\right)^{2}}{16} + \frac{27 \left(1 + i\right)^{\frac{3}{2}}}{16}\]
and
\[\beta = \frac{\alpha^{\frac{11}{2}}}{4} - \frac{7 \alpha^{\frac{7}{2}}}{4} - \sqrt{\alpha} + \frac{7
\alpha^{\frac{3}{2}}}{4} - \frac{\alpha^{\frac{15}{2}}}{4}\]