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Résumé:
La dosimétrie en radiothérapie est es-
sentielle pour garantir la précision et la
sécurité des traitements contre le can-
cer. La complexité et la variabilité de
la planification des traitements néces-
sitent des méthodologies avancées pour
l’automatisation et l’optimisation. Cette
thèse présente des approches novatri-
ces visant à automatiser le processus de
dosimétrie en radiothérapie.

Cette thèse commence par le développe-
ment d’un moteur de dosimétrie et une
évaluation approfondie des algorithmes
d’optimisation open-source existants pour
la planification des traitements. Ensuite,
ce manuscrit analyse les relations entre
différentes doses. Cette analyse conduit
à la proposition d’un cadre novateur pour
l’optimisation multi-objectif et la sélection
robuste de plans à l’aide de la théorie des
graphes.

Afin de réduire davantage le temps néces-
saire pour la planification en radio-
thérapie, la thèse explore l’application
de l’apprentissage par renforcement pour
l’optimisation des doses. Le système pro-
posé réalise la dosimétrie pour de nou-

veaux patients en exploitant les don-
nées de dose des patients traités dans le
passé. Cette méthode entièrement au-
tomatisée peut s’adapter aux pratiques de
différentes cliniques, réduisant ainsi le be-
soin d’ajustements manuels et facilitant
son adoption en pratique.

De plus, la thèse examine l’utilisation de
l’apprentissage profond pour la prédiction
des doses, en proposant une série de mod-
èles guidés par des Histogrammes Dose-
Volume (DVH) cibles. Ce guidage ori-
entation permet l’incorporation de direc-
tives lors de la génération de doses par
les modèles. En outre, cette technique
permet d’entraîner un seul modèle capa-
ble de s’adapter, plutôt qu’un modèle pour
chaque clinique.

Les contributions de cette thèse présentent
des avancées dans la dosimétrie en radio-
thérapie, ouvrant la voie au développement
d’un système de planification de traite-
ment entièrement automatisé, s’adaptant
aux contraintes cliniques. Ces innova-
tions pourraient améliorer les flux de tra-
vail cliniques, en réduisant l’intervention
humaine à un minimum, rendant la radio-
thérapie plus efficiente.
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Abstract:
Radiotherapy dosimetry is critical in en-
suring the precision and safety of cancer
treatments. The complexity and variabil-
ity of treatment planning necessitate ad-
vanced methodologies for automation and
optimization. This thesis introduces novel
approaches aimed at automating the ra-
diotherapy dosimetry process.

The research begins with developing a
dosimetry engine, and comprehensively
evaluating existing open-source optimiza-
tion algorithms for treatment plannifica-
tion. Then, this thesis analyzes the re-
lationships between different treatment
plans. This analysis leads to the proposal
of a novel framework for multi-objective op-
timization and robust plan selection using
graph theory.

To further reduce the time required for ra-
diotherapy planning, the thesis explores
the application of reinforcement learning
for dose optimization. The proposed sys-

tem performs dosimetry for new patients
by leveraging dose data from past pa-
tients. This fully automated method can
adapt to clinical dependencies, reducing
the need for manual fine-tuning and eas-
ing its adoption in practice.

In addition, the thesis investigates the
use of deep learning for dose prediction,
proposing a series of models guided by tar-
get Dose Volume Histograms (DVH). This
guidance facilitates the incorporation of
guidelines into the deep-generated doses.
Moreover, it allows a single model to be
trained instead of one for each clinic.

The contributions of this thesis represent
advancements in radiotherapy dosimetry,
paving the way for the development of
a fully automated, clinically dependent
treatment planning system designed to op-
erate with minimal human intervention.
These innovations could enhance clinical
workflows, making radiotherapy more effi-
cient.
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Synthèse

Le cancer constitue l’une des principales causes de mortalité dans le monde, en particulier
dans les pays les plus développés. Le cancer est caractérisé par la prolifération incontrôlée
et anormales de cellules. Ces cellules cancéreuses envahissent les tissus voisins et peuvent
se propager à d’autres parties du corps (un processus appelé métastase). Avec une inci-
dence croissante liée au vieillissement de la population et aux facteurs environnementaux,
le cancer représente un défi majeur pour la santé publique.

Pour lutter contre cette maladie, trois principales approches thérapeutiques sont utilisées:
la chirurgie, la chimiothérapie et la radiothérapie. La chirurgie est le traitement de choix
les cancers localisés, permettant une ablation physique des tumeurs. La chimiothérapie
utilise des agents chimiques pour détruire les cellules cancéreuses, mais elle affecte aussi
les cellules saines, entraînant des effets secondaires significatifs. La radiothérapie repose
sur l’utilisation de rayonnements ionisants pour cibler et détruire les cellules tumorales,
avec un impact plus ciblé que la chimiothérapie.

La dosimétrie en radiothérapie joue un rôle central dans la prise en charge des cancers,
où l’objectif est de maximiser l’efficacité thérapeutique tout en minimisant les effets in-
désirables sur les tissus sains. La complexité croissante des techniques de planification
et la variabilité des cas cliniques nécessitent des approches avancées pour automatiser
et optimiser ces processus. Cette thèse explore plusieurs méthodologies innovantes pour
améliorer la dosimétrie, avec pour ambition long terme de créer un système de planification
entièrement automatisé et adaptable aux contraintes cliniques.

Dans un premier temps, la thèse présente le développement d’un moteur de dosimétrie
performant, accompagné d’une évaluation exhaustive des algorithmes d’optimisation open-
source existants. Ces travaux initiaux permettent d’identifier les limites et opportunités
pour l’amélioration des systèmes actuels. Une analyse approfondie des relations entre dif-
férentes doses conduit à l’élaboration d’un cadre novateur pour l’optimisation multi-objectif
et la sélection robuste de plans, basé sur les concepts de la théorie des graphes. Ce cadre
simplifie la gestion des compromis entre objectifs cliniques concurrents, tout en garantis-
sant la qualité et la sécurité des traitements.

Pour répondre au défi du temps de planification, la thèse se penche sur l’apprentissage
par renforcement comme levier d’accélération. Le système proposé utilise les données his-

ix



x

toriques de patients pour optimiser les plans de nouveaux cas, apprenant à reproduire
des stratégies efficaces et adaptées aux spécificités cliniques. Cette approche réduit con-
sidérablement le besoin d’ajustements manuels, rendant le processus plus rapide et plus
homogène.

Par ailleurs, la thèse explore l’application de l’apprentissage profond pour prédire les dis-
tributions de dose, en s’appuyant sur des Histogrammes Dose-Volume (DVH) cibles. Ce
guidage structuré permet non seulement d’incorporer les directives cliniques dans la pré-
diction, mais aussi de créer un modèle unique capable de s’adapter aux pratiques variées
des cliniques. Cette innovation évite le besoin de développer un modèle spécifique pour
chaque centre, facilitant l’adoption de la méthode dans des environnements diversifiés.

Enfin, les contributions de cette thèse marquent une avancée significative vers la création
d’un système de dosimétrie entièrement automatisé, intégré et adaptable. Ces approches
réduisent l’intervention humaine à son strict minimum, optimisent les flux de travail clin-
iques, et ouvrent la voie à une radiothérapie plus efficiente. Ces innovations s’inscrivent
dans une perspective d’amélioration continue des soins oncologiques, offrant une meilleure
accessibilité et standardisation des traitements.

Cette thèse jette les bases d’un écosystème automatisé et intelligent pour la dosimétrie en
radiothérapie, au service des patients et des cliniciens.
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Background

Abstract

The background chapter of this PhD provides a comprehensive overview of key concepts
in cancer treatment and radiotherapy. If you already know about radiotherapy and
multi-leaf collimator, I strongly advise to skip this chapter.

This chapter begins by outlining the nature of cancer, its phases, stages, risk factors,
and common types of treatments (with their advantages and disadvantages). Then, the
physics of radiotherapy is explored, with a focus on ionizing radiation, and biological
effects of radiation. This chapter also presents the patient journey in radiotherapy,
from diagnosis and treatment prescription to planning and follow-up. Key technologies
used in radiation therapy, such as multi-leaf collimator (MLC) linear accelerator (LINAC)
are introduced. Lastly, this chapter covers the irradiation techniques, and details ma-
jor steps in the dosimetry process: beam orientation optimization (BOO), fluence map
optimization (FMO), leaf sequencing (LS), and direct aperture optimization (DAO).

1
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4 CHAPTER 1. BACKGROUND

1.1 Medical context

1.1.1 About cancer
Cancer is a complex disease that can affect many parts of the body. This malady is charac-
terized by the uncontrolled growth of cells that can invade and destroy surrounding tissues.
Cancer is a leading cause of death worldwide. In 2022, the World Health Organization (WHO)
estimated 20 million new cancer cases and 9.6 million deaths linked to cancer [1]. Cancer
affects about 20% of the population, and is responsible for 1 in 10 deaths.

Cancer characteristics Cancer is characterized in various manners, starting with an
cell proliferation. Cancerous cells reprogram cellular metabolism to support their growth
[16], they can also stop cell growth arrest mechanisms, and usually manage to evade apop-
tosis (programmed cell death). Cancer cells can escape the immune system, and change
their cellular response phenotypic via plasticity. At some point, cancer cells can get the
ability to undergo a sufficient number of successive cell cycles of growth and division to
generate macroscopic tumors. To support their growth, they create new blood vessels to
get nutrients. Finally, they can escape and form metastasis, and will eventually provoke
senescence 1.

Conditions leading to cancer Cancer is a complex disease. First, cancer is caused by
mutations in the DNA. These mutations can be inherited or acquired. Second, cancer is em-
braced by epigenetic reprogramming, i.e., gene expression changes (not caused by changes
in the DNA sequence). Third, cancer is often associated with an inflammatory context; in-
flammation can promote cancer growth and spread. Finally, cancer is often associated with
a disruption of the microbiota (the microbial community living in and on the human body).
This disruption can promote cancer growth and spread.

Phases of cancer Cancer develops in several phases.

Initiation The first phase is initiation: Mutations in the DNA transform a healthy cell
into a cancer cell.

Promotion The second phase is promotion or "tumorigenesis". During this phase, the
cancer cell grows and divides uncontrollably to form a tumor cluster of cells. This growth
is promoted by changes in gene expression and other factors [138]. It may also create new
blood vessels to get nutrients and oxygen.

Evolution The final phase is evolution. The tumor will first grow locally, then regionally,
invading and damaging surrounding tissues. Finally, the cancer cell will spread to other

1deterioration of functional characteristics
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body parts, forming metastasis. Metastasis is the leading cause of death in cancer patients
[123].

Cancer stages Cancer is classified into stages [2].

• Stage 0: ’in situ neoplasm’; it means a group of abnormal cells in an area of the body.
The cells may develop into cancer in the future.

• Stage 1: the cancer is small and contained within the organ it started in.

• Stage 2: the tumor is larger than in stage 1, but the cancer hasn’t started to spread
into the surrounding tissues.

• Stage 3: the cancer is larger; it has started to spread into surrounding tissues and
cancer cells in the lymph nodes nearby.

• Stage 4: the cancer has spread from where it started to another body organ. This
spread is also called secondary or metastatic cancer.

Doctors use the TNM system to describe the cancer stage [55].

T stands for the size of the Tumour; it can be 1, 2, 3, or 4, with one being small and four
being large.

N stands for the number of lymph Nodes affected; it can be between 0 and 3. 0 means no
lymph node contains cancer cells; 3 means many lymph nodes contain cancer cells.

M stands for the existence of Metastasis in another part of the body; it can be 0 (no
spread) or 1 (cancer has spread).

Most common cancers According to the WHO, the most common cancers are lung,
breast, colorectal, prostate, skin, and stomach cancer. This thesis mainly focuses on prostate
cancer, which is among the most common ones.

Risk factors Tobacco use, alcohol consumption, unhealthy diet, physical inactivity, and
air pollution are risk factors for other cancer types. However, the leading risk factor for
prostate cancer is age. Thus, it touches all social populations evenly and is unavoidable.

1.1.2 Treatment types
There are three main types of cancer treatment: surgery, radiation therapy, and chemother-
apy. The choice of treatment depends on the type and stage of cancer, the patient’s age and
general health, and other factors.
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1.1.2.1 Surgery

Surgery is the most effective cancer treatment [61]. It involves removing the tumor and
surrounding tissue. Surgery is often used to treat early-stage cancer that has not spread to
other parts of the body. For surgery to be possible, the tumor must be located in a place the
surgeon can easily access. Surgery can be followed by other treatments, such as radiation
therapy or chemotherapy, to kill any remaining cancer cells.

Advantages Surgery is considered a curative treatment modality; cancerous tissues are
entirely removed, leading to disease eradication. Being a localized intervention, it primarily
affects the targeted area with minimal systemic side effects. Additionally, surgical proce-
dures are typically performed in a single session, unlike other treatment modalities (e.g.,
radiotherapy) that may require multiple cycles.

Disadvantages Surgery is invasive, and it can be painful. The main disadvantage, is
that it can only be used for localized cancer (with no metastasis) accessible to the surgeon.

1.1.2.2 Chemotherapy

Chemotherapy is a treatment that uses drugs to kill cancer cells. It is systemic, meaning it
can reach cancer cells anywhere in the body. Therefore, it usually has strong side effects.
Chemotherapy is often used to treat cancer that has spread to multiple parts of the body
(i.e., metastatic cancer).

Depending on how advanced the cancer is, chemotherapy can be used to cure, control, or
relieve symptoms (palliation).

Advantages Chemotherapy can be used to treat cancer that has spread to multiple parts
of the body. It can also be used to relieve symptoms and improve quality of life.

Disadvantages Chemotherapy is a heavy treatment, with strong side effects. It can also
weaken the immune system, making the patient more prone to infections. Finally, newer
drugs tend to be very expensive.

1.1.2.3 Radiation therapy

Radiation therapy is a treatment that uses high-energy radiation to kill cancer cells. It is
semi-local, meaning that it only affects the tumor, and the tissues traversed by the radiation
beams [128]. Radiation therapy is curative most of the time. It can be used alone or in
combination with other treatments.

Radiation therapy can be delivered in two ways: external radiation therapy and internal
radiation therapy. External radiation therapy uses a machine to deliver radiation to the
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tumor from outside the body. Internal radiation therapy uses radioactive materials placed
directly into or near the tumor. This thesis focuses on external radiation therapy.

Advantages Radiation therapy is a non-invasive treatment, with limited side effects. It
is relatively localized, and can be used to treat cancers that are not accessible via surgery.

Disadvantages Radiation therapy still targets healthy cells. Depending on the patient’s
response, it may cause side effects.

1.1.2.4 Other treatments

Cancer research is very active, and new treatments are constantly being developed. These
treatments are often used in combination with others.

Immunotherapy Immunotherapy is a treatment that uses the body’s immune system
to fight cancer. It can boost or change how the immune system works to find and attack
cancer cells. It is a systemic treatment.

Targeted therapy Targeted therapy is a treatment that uses drugs to target specific
molecules that are involved in cancer growth. It is a systemic treatment.

Hormone therapy Hormones are proteins or substances the body makes that help con-
trol how specific cell types work. Hormone therapy is a treatment that uses drugs to block
or lower the amount of hormones in the body that are involved in cancer growth. It is a
systemic treatment.

Stem cell transplant A stem cell transplant is a treatment that uses stem cells to replace
cells damaged or destroyed by cancer treatment. It is a systemic treatment.

1.2 Physics of Radiotherapy
Radiation therapy uses high-energy radiation to kill cancer cells.

1.2.1 Ionizing radiation
Ionizing radiation has enough energy to remove tightly bound electrons from atoms, creating
ions. X-rays and gamma rays are both electromagnetic radiations that are ionizing and high-
energy photons. Some particle radiations, such as particles, beta particles, and neutrons,
are also ionizing, but radiotherapy uses photon radiations.
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X-rays are produced by accelerating electrons to collide with a target material and are used
in medical imaging and (external) radiation therapy. In contrast, gamma rays originate from
the radioactive decay of specific atomic nuclei and are used in (internal) radiation therapy.

Because ionizing radiation therapy can damage the DNA in cells and lead to cell death, it is
used in radiation therapy for treating cancer.

1.2.2 Photon interactions
Photon-matter interactions within an absorbing medium undergo stochastic (i.e., random)
processes. Four types of interactions (figure 1.1) are possible for photons; their occurrence
depends on the atomic number, matter, and the energy of the incident photon [37]. Three
of the four interactions generate secondary ionizing particles that deposit energy in the
medium.

Rayleigh scattering The Rayleigh scattering (figure 1.1a) does not change the energy
of the incident photons and consequently has no direct consequence on the body. Rayleigh
scattering predominantly occurs with low-energy photons (typically < 100 keV).

Photoelectric absorption The photoelectric absorption effect (figure 1.1b) is the pro-
cess by which an atom absorbs a photon, and an electron is ejected from the atom. The
photon ceases to exist, and its energy is transferred to the electron. The ejected electron,
called a photoelectron, can ionize other atoms, leading to dose deposition. The photoelectric
effect is the dominant interaction for low-energy (< 100 keV) photons.

Compton scattering Compton scattering (figure 1.1c) is the process by which an atom
scatters a photon, and ejects an electron from the atom. The photon is scattered at an
angle, and part of its energy is transferred to the electron. The emitted electron is called
a Compton electron, which can ionize other atoms, leading to dose deposition. Compton
scattering is the dominant interaction for medium-energy (≈ 0.1 to ≈ 10 MeV) photons.

Pair production Pair production (figure 1.1d) is when an atomic nucleus absorbs a pho-
ton and creates an electron-positron pair. The photon ceases to exist, and its energy is
transferred to the electron-positron pair. The positron rapidly interacts with another elec-
tron of the matter, producing two photons emitted at 180° from each other. The electron can
ionize other atoms, leading to dose deposition. Pair production is the dominant interaction
for high-energy (> 10 MeV) photons.

1.2.3 Photon attenuation
The photon beam will be attenuated as it passes through the medium, and its intensity will
decrease. The dose deposition in the medium is proportional to the intensity of the photon
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Figure 1.1: Diagrams of photon interactions with matter
observed in the kilo and mega-voltage energy range.
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after radiotherapy sessions.

beam. The attenuation of the beam follows an exponential law concerning the depth of the
medium traversed (Lambert-Beer law) [8]:

I(x) = I0 exp(−µx)

where I is the intensity of the photon beam after passing through a thickness x of the
medium, I0 is the initial intensity of the photon beam, and µ is the attenuation coefficient
of the medium.

1.3 Biological effect on cells
Ionizing radiation can damage the cells leading to cell death in various ways.

1.3.1 Radiation effects on DNA
Ionizing radiation damages the DNA [116] in cells and leads to cell apoptosis2, necrosis3, or
senescence. Radiation induces DNA damage through both direct and indirect mechanisms:
Directly, it causes single-strand breaks (SSBs), double-strand breaks (DSBs) [114], DNA
crosslinks, and DNA-protein crosslinks [86]. Indirectly, radiation generates reactive oxygen
species (ROS) and reactive nitrogen species (RNS), further contributing to DNA damage.

2process of programmed cell death
3death of most or all of the cells in an organ or tissue



1.3. BIOLOGICAL EFFECT ON CELLS 11

DNA repair Cells have mechanisms to repair DNA damage. There are several types of
DNA repair mechanisms, including base excision repair (BER), nucleotide excision repair
(NER), mismatch repair (MMR), and double-strand break repair (DSBR). Cancer cells often
have defects in DNA repair mechanisms, making them more sensitive to radiation therapy
[55]. This repair mechanism being available only for healthy cells leads to cell death only
for cancerous cells when their DNA is too damaged to survive (see figure 1.2).

1.3.2 Radiation affects the plasma membrane
Radiation significantly impacts the biological properties of the plasma membrane by affect-
ing its composition, structural integrity, and functional capabilities. Radiation exposure
can alter the fluidity and permeability of the cell membrane, affecting the transport of ions
and molecules into and out of the cell. Additionally, radiation causes corrosive damage,
and damage to the membrane can initiate signaling events that are important for the apop-
totic response [24]. These changes can have cascading effects on various cellular processes,
highlighting the critical role of the plasma membrane in maintaining cellular homeostasis
under stress conditions.

1.3.3 Radiations and cell organelles performances
Radiation exerts significant detrimental effects on various cellular organelles, impacting
their functionality and overall cellular health [122]. One critical target of radiation damage
is the endoplasmic reticulum, where radiation can disrupt protein folding and processing,
leading to cellular stress and apoptosis. Additionally, ionizing radiation induces alterations
in ribosomal structure and function, impairing protein synthesis and compromising cellu-
lar homeostasis. Mitochondria, the cell’s powerhouses, also exhibit altered behavior follow-
ing radiation exposure, including disruptions in energy production and initiating apoptotic
pathways. Furthermore, lysosomes, essential for cellular waste processing and recycling,
suffer damage upon irradiation, potentially accumulating cellular debris and impairing cell
function. These collective effects highlight radiation’s broad and profound impact on cellular
organelle performance [136].

1.3.4 Radiation alters the biological behavior of cells
Radiation profoundly influences the biological behavior of tumor cells and the immune sys-
tem, impacting critical aspects of cancer progression and immune response. It affects tumor
cell proliferation, often reducing the ability of cancer cells to multiply by damaging their DNA
and cellular structures. Radiation also influences tumor cells’ invasion and metastasis po-
tential either by directly impairing their motility or altering the tumor microenvironment
to make it less conducive to cancer spread. Additionally, radiation can modulate cancer-
promoting inflammation, either by inducing pro-inflammatory signals that support tumor
growth or by disrupting the inflammatory milieu to hinder cancer progression.
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1.3.5 Radiation effects when combined with immunotherapy
Radiation can be used alongside immunotherapy. The effect of both treatments is more
significant than the sum of their impact if used alone.

Ray-Enhanced Anti-CTLA-4 Immunotherapy Radiation therapy can enhance the
efficacy of immune checkpoints 4 based therapy, such as anti-CTLA-4 immunotherapy 5 , a
treatment that blocks the CTLA-4 protein in T cells, thus boosting the immune system’s re-
sponse against cancer cells. The combination of radiation and anti-CTLA-4 immunotherapy
has shown promising results, as radiation-induced tumor cell death releases antigens that
can further stimulate the immune system [131]. This synergy can improve tumor control
and potentially better clinical outcomes than either treatment alone.

Radiation Combined with Anti–PD-1/PD-L1 Immunotherapy Combining radi-
ation with anti–PD-1/PD-L1 immunotherapy 6 has shown significant success. Anti–PD-
1/PD-L1 therapies block the PD-1/PD-L1 pathway, which tumors exploit to evade immune
detection. Radiation therapy can augment this effect by increasing the immunogenicity of
the tumor, thereby making cancer cells more susceptible to immune attack [45].

TLR-Mediated Immunologic Effects of Radiation Therapy Radiation therapy can
also exert immunologic effects through Toll-like receptors (TLRs), a class of proteins involved
in pathogen recognition and activation of innate immunity. Radiation can activate TLRs on
immune cells, producing cytokines and chemokines that enhance the immune response
against tumors. This TLR-mediated effect contributes to the synergy between radiation and
immunotherapies, leading to more robust anti-tumor responses [134].

While this thesis does not focus on biological aspects, one should remember that radiation
affects cells in various ways, and cancer therapy is complex.

4The immune checkpoints are regulators of the immune system; they prevent the immune system
from attacking all cells indiscriminately. Tumor cells sometimes exploit this mechanism to evade
immune surveillance.

5Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a protein receptor that downregulates
immune responses (it acts as an "off" switch). Blocking this receptor induces lymphocyte activation
and cytokine production and has an in vivo antitumor effect.

6Programmed cell Death protein 1 (PD-1) is a protein present on the surface of immune cells, T
lymphocytes, and is a component of the immune checkpoint. The T lymphocyte can interact via
PD-1 with a tumor cell presenting protein Programmed Death-Ligand 1 (PD-L1) on its surface. This
interaction inactivates the T lymphocyte and consequently inactivates one of the immune system’s
defense mechanisms against tumor cells. Researchers have developed antibodies that bind to PD-1
or PD-L1, called anti-PD-1 or anti-PDL-1 antibodies. Blocking the immune checkpoint by preventing
the interaction between PD-1/PD-L1 can lift the inactivation of the immune system, which can then
fight the tumor cell again.
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1.4 Patient Path
The radiotherapy patient path encompasses several critical stages, each essential for the
effective treatment of cancer. This section outlines the sequential steps of radiotherapy,
from initial detection and diagnosis to follow-up care.

1.4.1 Diagnostic
Patients diagnosed with a tumor can go through several paths: surgery, radiotherapy, im-
munotherapy, chemotherapy, or any combination. Doctors will choose the most appropriate
treatment(s) based on evidence they have (biopsy, radios, et cetera). This manuscript will
focus on the radiotherapy path.

1.4.2 Radiotherapy Prescription
Following a confirmed diagnosis and the choice of radiotherapy treatment, the oncologist
develops a prescription. This prescription specifies the type, dosage, and frequency of ra-
diation treatment tailored to the patient’s specific cancer type, location, and stage. The
doctors define minimal tumor irradiation and maximum damage to surrounding healthy
tissues. Most of the time, templates are used and fine-tuned to fit specific patients.

1.4.3 CT scan and Contouring
A computed tomography (CT) scan is performed to obtain detailed images of the patient’s
anatomy. These images are used to delineate the tumor and surrounding organs at risk.
Automatic segmentation delineated the contour organs on each slice. Medical doctors pre-
viously did this task, and it was heavily time-consuming. Nowadays, artificial intelligence
performs with only minor human correction needed [125] [77]. After the emergence of AI
for contouring, this manuscript will tackle the treatment planning problem.
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The CT scan also provides the spatial information necessary for precise irradiation simula-
tion.

1.4.4 Treatment Planning
The treatment planning process involves developing a detailed plan specifying the patient’s
radiation dose distribution. Advanced software calculates the optimal arrangement of radi-
ation beams to achieve the desired dose while minimizing exposure to healthy tissues. This
thesis registers new advances in the planning step. Plans must be reviewed and approved
by doctors.

1.4.5 Irradiation Sessions
Irradiation sessions, or treatment delivery, is the actual irradiation of the patient. Cone
Beam Computed Tomography (CBCT) is usually done to reposition the patient with the
scan so that all organs align with the planning CT. Nowadays, the tendency is to reduce the
number of irradiation sessions (the old typical five weeks of five sessions is now usually two
weeks of five sessions).

1.4.6 Follow-up
After the completion of radiotherapy, patients enter the follow-up phase. Regular follow-up
appointments are scheduled to monitor the patient’s response to treatment, manage any
side effects, and detect any signs of recurrence.

1.5 Machines
The discovery of X-rays by German physicist W. C. Roentgen in 1895 marked a pivotal mo-
ment in medical science. Only one year later, in 1896, Despeignes began using radiotherapy
in France. Victor Despeignes delivered 15-30 minutes with 80 irradiation sessions (so-called
"fractions") to relieve the pain of patients with stomach cancer [50].

Since then, machines have become more powerful and more complex. Modern machines
can deliver mega-voltage radiation [54], which are sufficiently high to destroy tumors in
minutes. However, such high-power treatments will irreversibly damage healthy tissues.
Hence, as the machines became more powerful, constructors built more complex modula-
tion mechanisms to preserve organs at risk.

1.5.1 Molds
The first kind of modulation used was molds: their purpose was to stop the irradiation
before it reached the body. By strategically obscuring the rays, organs can be spared, as
they will receive a small amount of irradiation dose, while the tumor will receive a fatal
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Figure 1.4: MLC-LINAC Machines Irradiation Filtering System.

dose. Molds had significant limitations due to their single-use nature. It was necessary to
create a custom mold for each patient as their anatomy differs. Typically, three molds were
required for the three irradiation angles. Modern technology avoids single-use molds using
motorized blockers to stop the rays and dynamically modulate the radiation beam.

1.5.2 Multi-Leaf Collimator - Linear Accelerators
Multi-leaf collimator (MLC) technology combined with Linear Accelerators (LINAC) was a
revolution in the radiotherapy world [7] [143]. They are capable of turning around the pa-
tient to deliver irradiation from multiple angles (figure 1.4a). Moreover, an array of motorized
leaf pairs can shape the radiation beam with high precision (figure 1.4b). Additionally, MLC
systems are sometimes equipped with jaws, which help to shape the beams better. The MLC-
LINAC is the most common type of radiation therapy machine used today. This manuscript
will focus on the MLC-LINAC system due to its widespread use and versatility in clinical
settings.

1.5.3 Tomotherapy
Tomotherapy systems have an irradiation head that rapidly rotates around the patient,
equipped with a single layer of binary blockers that can be activated and deactivated almost
instantaneously [76]. The tomotherapy machines follow a helical path [56], rotating around
the patient while simultaneously moving along their body.
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1.5.4 CyberKnife
CyberKnife systems are another non-invasive alternative to conventional MLC-LINAC radio-
therapy machines with higher flexibility [58]. These CyberKnife machines have the irra-
diation head mounted on a robotic arm, which allows a vast array of motions around the
patient. This flexibility enables the delivery of even more complex-shaped doses. CyberKnife
technology is particularly beneficial for treating unusual tumors in challenging or sensitive
body areas.

1.5.5 Brachytherapy
Brachytherapy involves the placement of a radioactive source directly inside the body of the
patient [17]. This technique allows for delivering localized high-dose radiation. Although
brachytherapy involves an invasive procedure, it significantly minimizes radiation exposure
to surrounding healthy tissues. The localized character of brachytherapy makes it a good
treatment option for some types of cancer.

1.6 Irradiations techniques
This section describes the main irradiation techniques that can be used with MLC-LINAC
machines. The techniques have evolved over the years of MLC usage. Better irradiation
techniques improve tumor targeting while keeping exposure of healthy tissues to a mini-
mum.

1.6.1 3-Dimensional Conformal Radiotherapy
Three-Dimensional Conformal Radiotherapy (3D CRT) shapes radiation beams to closely
fit the contours of the tumor. The MLC leaves are positioned to match the tumor’s contour
projection on a plane perpendicular to the radiation rays, typically using three angles. Such
shaping of the beams can be done with mold (which is single-use) or with an MLC. Although
3D CRT targets the Principal Target Volume (PTV) more than Organs At Risk (OARs), modern
techniques provide superior sparing of healthy tissues. Consequently, advanced and less
naive methods have largely supplanted 3D CRT in contemporary clinical practice.

1.6.2 Intensity Modulated RadioTherapy
Intensity Modulated RadioTherapy (IMRT) represents a significant advancement over 3D
CRT by taking better advantage of the MLC capabilities. Instead of delivering radiation with
uniform intensity from each angle, IMRT dynamically adjusts the beam intensity to improve
patient outcomes [80].
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Number of Beams The choice of the number of beams in IMRT is a balance between
treatment complexity and effectiveness. Using many beams can evenly spread the unwanted
dose across all organs, but adds complexity to treatment planning and prolongs the delivery
time, which can increase patient movement and reduce dose precision. Conversely, fewer
beams simplify planning and shorten treatment time but may result in less optimal dose
distribution. Research indicates that 50 beams are needed for "nearly optimal IMRT" [38].
Beams at exactly 180 degrees from each other tend to have (very) similar influence on the
dose distribution on the patient. Therefore, dosimetrists tend to choose an odd number of
equispaced beams. In practice, the number of beams used is below 25.

1.6.3 Volumetric Modulated ArcTherapy
Volumetric Modulated Arc Therapy (VMAT) enhances IMRT by allowing the MLC LINAC head
to rotate while delivering radiation. Unlike IMRT, which stops the head at specific positions
around the patient, VMAT continuously irradiates while rotating. This technique can better
distribute the unwanted dose and reduces the irradiation time [44].

However, the mechanical constraints of the machine complicate the optimization problem for
VMAT compared to IMRT, making the optimization more computationally intensive. Studies
have demonstrated that, IMRT with a Sliding Window and more than 7 angles can achieve
equally effective dose distribution [12] [102]. While demonstrated with IMRT Sliding Win-
dow, the techniques developed in this manuscript apply to VMAT, given sufficient compu-
tational resources.

1.7 Dosimetry steps
Dosimetry aims to design a treatment plan (i.e., machine instructions) that delivers the
best possible dose for the patient. The "best" dose is difficult to define, so doctors formulate
high-level clinical dose requirements. These requirements are abstract, so transitioning to
machine instructions requires a series of sub-steps. For IMRT, three main steps are typically
followed: Beam Orientation Optimization (BOO), Fluence Map Optimization (FMO), and Leaf
Sequencing (LS).

1.7.1 Beams Orientation Optimization
Beam orientation optimization (BOO) is the initial dosimetry step. This step determines
the optimal number of radiation beams and their respective angles. The beams’ orientation
significantly impacts the dose distribution within the patient: beams close to each other
tend to have similar effects on the body. In contrast, far-apart beams tend to create doses
impacting different tissues in the body. There is one exception to this rule of thumbs:
Beams exactly 180° from each other can have a similar biological effect because rays will
follow the same line, just entering the body from opposite directions. Despite its importance,
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the practical benefits of BOO are questionable. Research [110] suggests that an extensive
BOO process offers only slight improvement over more straightforward strategies, like using
equispaced beam angles. When using equispaced beams, it’s common to use an odd number
of beams to avoid beams at exactly 180° having the same effect. Employing an odd number
of beams is standard practice when utilizing equispaced beam arrangements. This approach
avoids beams positioned at precisely 180° from each other, with similar clinical effects (as
mentioned before). Therefore, this manuscript will assume the use of an odd number of
equispaced beams and no further BOO.

1.7.2 Fluence Map Optimization
Fluence map optimization (FMO) is the critical step in the IMRT planning process. FMO
aims to create fluence maps, i.e., a two-dimensional radiation intensity distribution on each
beam’s cross-sectional area. The fluence maps should be optimized to shape the dose distri-
bution according to the treatment plan’s objectives. At this stage, the physical constraints
of the MLC still need to be considered; the primary focus is on achieving the desired dose
distribution within the patient. The output of FMO is a set of idealized fluence maps for
each beam.

1.7.3 Leaf Sequencing
Leaf Sequencing (LS) determines the specific positions and movements of the MLC leaves.
The objective is to ensure that the delivered fluence map closely approximates the ideal
fluence map generated during the FMO step. This approximation must be attained while
considering the physical limitations of the treatment machine, such as irradiation power,
leaf speed, or collimator speed, along with a soft constraint on the total treatment duration.

Step and Shoot The "Step and Shoot" technique in IMRT involves sequentially moving
the MLC leaves to different positions to deliver varying radiation intensities. This technique
for leaf sequencing is relatively simple computationally.

The fluence maps are divided into discrete levels (figure 1.5). Then, the MLC leaves are
positioned so that the open area of the irradiation head matches the level set (figure 1.6).
Note that convex level sets can all be matched with the MLC leaves; if the level set is concave,
changing the collimator angle may allow the leaves to match the level set shape (figures 1.7a,
1.7b, 1.7c). Each level set is delivered as a static beam in sequence. As the level sets are
refined, the irradiation time increases Dosimetrists must set a tradeoff between achieving
greater accuracy and maintaining an efficient treatment time.

Sliding Window The "Sliding Window" technique employs a continuous sweep motion of
the MLC leaves. This approach enables the delivery of any continuous, positively defined
fluence within the irradiation window of the MLC-LINAC. In contrast with step and shoot,
a sliding window is more computationally intensive: Finding the appropriate leaf motions
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Figure 1.5: Example of a fluence map discretization.
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Figure 1.6: Example of level set matching with leaves.
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Optimal fluence map Colimator angle: 0° Colimator angle: 90°

(a) Example of a concave level set matched with leaves.
Optimal fluence map Colimator angle: 0° Colimator angle: 90° Colimator angle: 45°

(b) Example of a more complex concave level set matched with leaves.
Optimal fluence map Colimator angle: 0° Colimator angle: 30° Colimator angle: 45° Colimator angle: 60° Colimator angle: 90°

(c) Example of a concave level set impossible to match with leaves.

Figure 1.7: MLC leaves can not always be set to shape level
sets of fluence functions.
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requires solving a linear programming problem for each pair of leaves (sometimes called
"Inverse Sliding Window Algorithm").

The fluence is segmented in a one-dimensional fluence curve along each leaf pair axis (see
figure 1.8). Suppose the motion of the leaves is from left to right: The difference between
the time the right and left leaves pass by a point determines the amount of irradiation
delivered at that point. The greater the time difference, the more rays will be sent from
that point (in figure 1.9a and 1.9b, the time laps between left and right leaves passing a
point is proportional to the fluence delivered at that point). One needs to carefully move
the opening (right) and closing (left) leaves to deliver the correct amount of rays at each
point of the fluence map. Solving a linear programming problem allows a leaf pair to deliver
any fluence within arbitrary approximation in a reasonable amount of time (figure 1.9). A
playground to calculate the leaf’s motion for an arbitrary fluence is available here: https:

//mics-lab.github.io/PresentationJuin2023PRFD/demo.

The sliding window technique is used most of the time, as delivery time is much (about twice)
faster [88]. This manuscript assumes the use of this technique, focusing on optimizing the
fluence distribution.

1.7.4 (Optional) Direct Aperture Optimization
Direct Aperture Optimization is mainly used in VMAT and occasionally employed to enhance
IMRT plans. Unlike traditional approaches, which separate fluence map optimization from
leaf sequencing, DAO directly optimizes the motion of the MLC leaves.

In VMAT, applying conventional leaf sequencing to any arbitrary fluence map is not feasible.

https://mics-lab.github.io/PresentationJuin2023PRFD/demo
https://mics-lab.github.io/PresentationJuin2023PRFD/demo
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Figure 1.9: Fluence curve can be approximated with arbitrary
error.
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Therefore, DAO is essential, as it is the only optimization method capable of generating a
VMAT treatment plan.

When applied to IMRT, DAO can refine the treatment plan by directly adjusting the aperture
shapes to better align with the desired dose distribution while accounting for the physical
constraints of the treatment machine. However, as this manuscript is not focused on leaf
sequencing, it assumes that no additional DAO is applied following conventional leaf se-
quencing.

1.8 Simulation
Throughout the dosimetry process, several approximations are employed. First, the as-
sumption is that each bixel (beam pixel) operates independently. This approximation fails
to account for interactions between adjacent bixels. Additionally, during FMO, ideal fluence
maps are generated without considering the physical limitations of the treatment machine,
such as the width of the multi-leaf collimator leaves (often 5mm). Furthermore, the effects
of beam penumbra and the scattering of radiation within the patient’s body are often sim-
plified or neglected in the FMO. Given these approximations, re-simulation of the treatment
plan is critical to verify that the machine instructions deliver a dose distribution closely
aligned with the expected outcomes.

1.9 Treatment Planning Systems
Treatment Planning Systems (TPS) are the crucial tools that calculate the precise machine
(MLC) motions according to the dosimetrists priorities and the irradiation technique chosen.

1.9.1 Manufacturer

Eclipse™ (Varian)
Eclipse™ [133], developed by Varian, is one
of the most widely used TPS globally. It sup-
ports VMAT with one or multiple arcs, and
IMRT with any number of beams. Eclipse™
integrates with Varian’s suite of treatment
machines, and integrates an automatic con-
touring tool [132].

Advertisement screenshot of
Eclipse™ (Varian’s TPS).
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ONE® | Planning (Elekta)
ONE® | Planning [35] is Elekta’s TPS, and
is also widely used, supporting IMRT and
VMAT. It is renowned for its speed with high-
precision dose calculation using the Monte
Carlo method 7.

Advertisement screenshot of
ONE® | Planning (Elekta’s TPS).

Precision® (Accuray)
Developed by Accuray, Precision® [3] is the
dedicated TPS for CyberKnife and TomoTher-
apy systems.

Advertisement screenshot of
Precision® (Accuray’s TPS).

1.9.2 Non-manufacturer

7Monte Carlo methods are a class of computational algorithms that rely on repeated random
sampling to obtain numerical results.
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RayStation (RaySearch)
RayStation [65], developed by RaySearch
Laboratories, is a TPS known for its ad-
vanced optimization algorithms. Unlike
manufacturer-specific systems, RayStation
can output plans for a wide range of linear
accelerators and imaging devices. It offers
robust support for various treatment tech-
niques, including VMAT, IMRT, 3D-CRT, Cy-
berknife, and TomoTherapy.

Advertisement screenshot of
RayStation (RaySearch’s TPS).

matRad (German Cancer Research Center - DKFZ)
matRad [31] is an open-source TPS developed by the German
Cancer Research Center (DKFZ) for research and education.
While not intended for clinical use, matRad offers a flexible
platform for testing and developing new treatment-planning
algorithms.

AutoPlan (TheraPanacea - Unpublished)
AutoPlan is the upcoming TPS from TheraPanacea, designed to incorporate artificial intel-
ligence and machine learning into the treatment planning process.





Introduction

Abstract

This chapter provides a comprehensive overview of the current landscape in radiother-
apy planning. We begin by re-contextualizing the field and outlining the critical chal-
lenges and limitations traditional methods face. The state of the art is then explored,
detailing advancements in automated rule implementation, knowledge-based radiother-
apy planning, and Multi-Criteria Optimization (MCO). We address the pivotal role of au-
tomated and knowledge-based techniques in improving treatment efficiency. The com-
mercial solutions, such as Pinnacle AutoPlanning, Eclipse RapidPlan, and RayStation
are discussed. We identify unresolved problems within the field, setting the stage for
the subsequent sections of the thesis.
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2.1 Context
Cancer remains one of the leading causes of mortality worldwide, with its incidence pro-
jected to rise in the coming decades [103, 121]. As our understanding of cancer biology
evolves and diagnostic techniques improve, the demand for effective and personalized treat-
ment strategies continues to grow [52]. Radiotherapy has emerged as a cornerstone in can-
cer management, either as a standalone treatment or in combination with other modalities
such as surgery, chemotherapy, and immunotherapy [108, 105]. Radiotherapy leverages
ionizing radiation to damage cancer cells’ DNA, impeding their ability to proliferate and
ultimately leading to cell death [145]. The efficacy of radiotherapy lies in its ability to de-
liver precise doses of radiation to tumor volumes while minimizing exposure to surrounding
healthy tissues [79]. This delicate balance between tumor control and normal tissue toxicity
underscores the importance of treatment planning in radiotherapy [29].

The advent of advanced imaging technologies [68], coupled with sophisticated delivery sys-
tems like Multi-Leaf Collimator Linear Accelerators (MLC-LINACs), Tomotherapy units, and
CyberKnife systems, has revolutionized the field of radiation oncology [62, 141]. These
technological advancements have paved the way for highly conformal treatment techniques.
Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT)
techniques offer unprecedented levels of dose sculpting, allowing for escalated doses to tu-
mors while better sparing organs at risk [87, 36, 30]. However, the increased complexity
of modern radiotherapy techniques has led to a corresponding increase in the complexity
of treatment planning [41, 109]. The process of creating an optimal treatment plan in-
volves multiple steps, including Beam Orientation Optimization (BOO) [99, 100], Fluence
Map Optimization (FMO) [71, 112, 67], Leaf Sequencing (LS) [20, 19, 140], and (sometimes)
Direct Aperture Optimization (DAO) [119, 33, 5]. Each step requires careful consideration
of numerous variables and constraints, making the planning process time-consuming and
labor-intensive [135].

In this context, this thesis aims to explore and advance the radiotherapy treatment planning
automation field, focusing on developing novel algorithms and methodologies to enhance
treatment plans’ efficiency, quality, and consistency. By building upon the foundational
knowledge of radiotherapy physics, biology, and clinical workflow, we seek to contribute to
the ongoing evolution of radiation oncology and, ultimately, to improve outcomes for cancer
patients.

2.2 Problematic
Traditional manual radiotherapy planning procedures are inherently subjective and time-
consuming. The reliance on individual planner expertise often leads to variability in treat-
ment plan quality[22, 10, 28, 137]. This treatment plan diversity can induce inconsistencies
in patient care. While efforts have been made to enhance consistency [6], significant vari-
ability among planners and institutions persists. There is a pressing need for more stan-



30 CHAPTER 2. INTRODUCTION

dardized planning approaches. The automation of treatment planning processes presents
a promising solution to these challenges.

Moreover, the time-intensive nature of manual optimization [148] and the growing demand
for radiotherapy services have created a pressing need to develop automated approaches to
streamline the radiotherapy planning process. Automation enables the treatment of more
patients and facilitates exploring a broader range of treatment options.

By applying computational algorithms and artificial intelligence, automated planning sys-
tems offer the potential to enhance radiotherapy treatment delivery significantly. These
systems can improve patient throughput and resource allocation by reducing planning time
and increasing the efficiency of radiotherapy departments. Automated planning can im-
prove plan quality and consistency, reducing variability and ensuring optimal treatment
outcomes. Furthermore, the ability to enable rapid re-planning facilitates adaptive radio-
therapy, allowing for adjustments to treatment plans in response to changes in tumor vol-
ume or patient anatomy. Finally, automated systems can explore a more expansive solution
space, potentially discovering novel and innovative planning strategies that may improve
treatment outcomes.

However, the development and implementation of automated planning systems pose chal-
lenges. These challenges include the creation of robust optimization algorithms, integrating
with existing Treatment Planning Systems, and validating against current clinical stan-
dards.

2.3 State of the Art

2.3.1 Research
Automated rule implementation and reasoning An automated computer program
with predefined rules and so called "if-then" 1 structures is a solution for implementing
simple clinical guidelines. In this context, the treatment planning system directly interprets
patient anatomy and dosimetric requirements, simulating the decision-making process tra-
ditionally employed in manual treatment planning [115]. By adhering to a structured, logi-
cal framework derived from human-defined protocols, automated reasoning in radiotherapy
(ARIR) can significantly reduce the need for manual intervention, particularly for repetitive
tasks.

Some modern TPS vendors have incorporated ARIR solutions, offering scripting capabilities
that enable users to customize the planning process. For instance, the Varian Eclipse [133]
system includes an application programming interface (API) that facilitates user-defined
scripting functions.

1Also known as "expert" systems.
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Knowledge-based radiotherapy planning Knowledge-based radiotherapy planning
(KBRP) represents an objective methodology for incorporating patient-specific data and his-
torical experience into the treatment planning process [91]. By automating the optimization
of KBRP, it is anticipated that a viable alternative to the current human-centric treatment
planning paradigm can be established. A prevalent KBRP approach involves leveraging a
database of historical benchmark plans to learn patient-specific dosimetric parameters and
generate new treatment plans. Automated KBRP tools effectively set optimization parame-
ters based on the desired dose-volume histogram. Previous studies have reported notable
dosimetric improvements in treatment plans generated by KBRP approaches compared to
benchmark data, particularly regarding sparing organs at risk [40, 130].

Conventional techniques Memorial Sloan Kettering Cancer Center developed advanced
optimization tools, including hierarchical constrained optimization, convex approximations,
and Lagrangian methods. These tools addressed the complexity and enhanced the speed,
quality, and accessibility of standardized yet personalized care [146].

Multi Criteria Optimization In DVH-based inverse optimization used by most com-
mercial TPS, a cost function must be defined to solve the minimization problem. This
function combines data from all volumes of interest as a weighted sum of penalties from
each DVH constraint. The weighting coefficients reflect tradeoffs between the target(s) and
different OARs. However, this approach requires online re-optimization if dosimetric prefer-
ences change during plan evaluation, making it time-consuming to find the optimal balance.
Multi-criteria optimization (MCO) was introduced to address this, enabling the simultane-
ous generation of multiple "anchor" plans. Each anchor plan optimizes one OAR’s DVH cri-
terion for maximal sparing without compromising tumor target dosimetry [66, 129]. These
plans form a hypersurface in the N-dimension space, where N is the number of independent
OAR dosimetric constraints. Referred to as the Pareto surface, this hypersurface contains
the optimal plans following different dosimetric criteria.

Wish list MCO can also be applied in an a priori approach, where dosimetric preferences
are defined before inverse optimization. In this method, a fully automated process gener-
ates a single optimal plan without the need for human interaction [14]. Breedveld et al.
introduced this approach in their work on IMRT Cycle (iCycle) [13], where the optimal plan
is guided by a predefined "wish list" of dosimetric criteria, each assigned a specific priority.

Pareto surface narrowing In theory, MCO requires generating numerous plans to con-
struct the Pareto surface, which can be time-intensive, even with automation. However,
Craft and Bortfeld analyzed head and neck IMRT plans and demonstrated that only a few
plans are needed to form a Pareto database [26]. Using objective correlation matrices and
principal component analysis (PCA) of beamlet solutions, Craft and Bortfeld showed that
if N independent dosimetric criteria are defined, N + 1 plans are sufficient to construct
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a feasible Pareto surface. This insight facilitated the practical clinical use of MCO, first
implemented in the RayStation TPS [104].

Pareto surface exploration Previous research has explored Pareto optimal tradeoffs
in various domains. Gebru et al., for instance, investigated methods for evaluating Pareto
optimality [42]. Similarly, Cilla et al. conducted a comprehensive analysis of Pareto fronts
[23]. These studies provide valuable insights into the principles and techniques associated
with Pareto optimization. Craft et al. proposed a method for generating multiple Pareto
optimal dose distributions, allowing clinicians to make informed decisions based on their
specific preferences and clinical contexts [27]

2.3.2 Commercial
Pinnacle AutoPlanning AutoPlanning in the Pinnacle TPS is an automated radiother-
apy planning tool that optimizes treatment plans based on user-defined prescriptions and
organ-at-risk constraints. AutoPlanning was initially used for prostate cancer and expanded
to more complex treatments. Determining best practices for the optimal use of AP remains
a challenge [106]. Most patients are treated using VMAT techniques, with most treatment
plans being generated solely by AP without requiring additional manual adjustments [83].
However, the dose calculation engine is recognized as an area with potential for improve-
ment.

Eclipse Rapidplan RapidPlan (Varian) is a knowledge-based planning (KBP) tool that
predicts dose-volume histograms (DVHs) based on patient anatomy and treatment param-
eters, using principal component analysis to model correlations between dosimetric and
geometric features. RapidPlan has been used at Institut du Cancer Avignon-Provence, with
83% of plans meeting clinical criteria in a single optimization [83]. However, fine-tuning
objectives for optimal trade-offs can be time-consuming, and the model’s performance is
limited by the variability of the training database.

RayStation auto-planning RayStation TPS Auto-Panning demonstrated similar or bet-
ter target coverage, conformity, and organ-at-risk sparing than manual planning, with a
significant reduction in manual operation time but increased computer processing time
[144]. The planning process depends on the use of IronPython-based automated scripts.
However, the qualifications required to develop and manage these scripts and the respon-
sibility in case of failure still need to be clarified.

mCycle The autoplanning solution mCycle, developed by Elekta, utilizes an a priori multi-
criteria optimization algorithm. Leon Berard Cancer Center (Lyon, France) tested the so-
lution and found all plans were considered clinically acceptable, with an optimization time
between 30 and 60 minutes [83]. However, obtaining a robust wish list is complex and
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center-dependent. There needs to be an extensive discussion with the clinical team to as-
sign the plan constraints and priority for each OAR objective.

2.4 Unsolved problems
Numerous approaches have been investigated to automate the radiotherapy treatment plan-
ning process. Despite these efforts, a consensus on the optimal method has yet to be estab-
lished, and few automated solutions have been adopted in clinics. The challenges associ-
ated with automating radiotherapy treatment planning remain a significant area of inquiry
within the field. This thesis addresses this critical issue by proposing advancements in key
areas that may contribute to developing a fully automated treatment planning system.

2.5 Thesis overview
This section provides a comprehensive summary of the forthcoming chapters of this thesis.

2.5.1 Fluence Map Optimization
Chapter 3 is dedicated to developing computational methods for FMO. The chapter begins
by assessing the discretization strategies. Naive approaches for optimization are explored,
stepping up to a formalization of the classical FMO problem. A significant focus is placed
on incorporating medical constraints and the corresponding importance factors associated
with each constraint, which are critical in ensuring clinically viable treatment plans. The
performance of various optimization algorithms is evaluated and compared, providing in-
sights into their relative efficiencies in solving the FMO problem. This primary work was
published in the form of an ArXiV article.

2.5.2 Semi-automation
Using graph-based analysis

Chapter 4 explores the interrelationships between radiotherapy treatment plans by defin-
ing a distance metric. This distance is then used to cluster plans into meaningful groups.
The clustering forms a basis for developing a semi-automated framework for treatment plan
optimization. Leveraging graph-based methodologies, this approach reduces the need for
manual intervention in the planning process while ensuring the generation of high-quality
plans. The potential of this semi-automated framework to streamline clinical workflows
was presented at the 2024 European Society for Radiotherapy and Oncology (ESTRO) con-
ference.
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2.5.3 Full-automation
With reinforcement learning and conventional treatment optimization tech-
niques

Chapter 5 addresses the limitations of classical optimization techniques in fully automat-
ing the treatment planning process. This chapter introduces a framework that integrates
reinforcement learning with conventional optimization. The reinforcement learning agent is
driven by clinical expertise and can be specialized to center-specific guidelines. The tech-
niques found have been published through a peer-reviewed journal article, a presentation
at the Artificial Intelligence in Medicine (AIME) 2024 conference, and a poster presentation
at the American Society for Radiation Oncology (ASTRO) 2024 meeting.

2.5.4 Hybrid-automation
Via target DVHs deep dose and dose mimicking technique

The final research chapter, Chapter 6, presents a hybrid approach to automating treatment
planning. This approach combines deep learning for dose prediction with target DVHs and
plan-mimicking strategies. This methodology bridges the gap between fully automated AI-
driven techniques and traditional planning methods, offering a more adaptable and clini-
cally feasible solution. The hybrid model provides a mechanism for mimicking high-quality
plans from experienced planners. This research has been presented at the French Soci-
ety of Medical Physics (SFPM) and the French Society for Radiation Oncology (SFRO) 2024
meetings.



Dosimetry Optimization

Abstract

Biological tissues are sensible to radiations in a non-linear manner [74], and slight vari-
ations in dose can have significant biological effects. Organs have differing sensibilities
to radiation, which increases further the difficulty in formulating the goals to achieve
when designing a radiation dose. Some organs can tolerate high cumulative doses if the
radiation is well distributed. In contrast, others may withstand high doses at localized
points ("hot spots") but cannot handle large doses overall. To address these differences,
clinicians impose dose-volume histogram constraints in addition to the prescribed dose.
Although the ideal objective is to minimize or eliminate radiation exposure to organs,
achieving 0Gy is impossible. The necessity of finding compromises drives the need for
advanced optimization techniques to generate fluence maps that best satisfy the med-
ical constraints. Therefore, various techniques can be used to calculate fluence maps
(i.e., performing the critical fluence map optimization step). In this chapter, we explore
some fluence map optimization techniques.

35
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3.1 Discretization
The optimization process starts with transforming the continuous nature of both the radi-
ation field and the human body into discrete elements. This transformation enables calcu-
lations with modern computers.

3.1.1 Fluence Map Discretization: Bixels
Fluence maps are broken down into discrete elements called "bixels" (beam elements). Bix-
els represent small and independent beams of radiation (see a visualization figure 3.1).

The width of each bixel is constrained by the width of the multi-leaf collimator leaves. Mod-
ern multi-leaf collimator systems typically have a leaf width of 0.5 cm.

The height of a bixel can be selected arbitrarily, as the leaf can move continuously. Nev-
ertheless, square bixels (akin to image pixels) are commonly used and will be employed
throughout this manuscript.

It is essential to know that since negative energy rays are physically infeasible, we need
to ensure that each bixel value is non-negative1. Bixels whose beams do not affect the
planning target volume are typically excluded from calculations to improve computational
efficiency. Activating these bixels could only degrade dose quality by increasing the dose to
organs at risk without benefiting the dose distribution within the planning target volume.

3.1.2 Human Body Discretization: Voxels
The human body of the patient is also divided into discrete elements, as it is a three-
dimensional object; the elements are "voxels" (volume elements). Each voxel represents
a small portion of tissue within the patient’s body, and will determine the granularity of the
dose computed.

The maximum resolution of the voxel grid is defined by the planning image, which is typically
a CT scan. It is common practice to resample the planning image to reduce computational
demands. In this manuscript, where new techniques are explored, we have opted to re-
sample the voxel grid to a resolution of 5 mm, ensuring a balance between computational
efficiency and accuracy.

Additionally, to further optimize the computational process, only voxels corresponding to
the planning target volume (PTV) and organs at risk (OARs) are retained for calculations.
This selective approach reduces unnecessary computation.

1In practice, to ensure positive bixel values, we use the absolute value element-wise.
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2D visualization
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(a) Continuous fluence (2D plot).
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(b) Discretized fluence (2D plot).

3D visualization
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(c) Continuous fluence (3D plot).
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y

Discrete fluence map

(d) Discretized fluence (3D plot).

Figure 3.1: Example of a fluence discretized to 20× 20 bixels.
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3.1.3 Dose-Influence Matrix
The Dose-Influence Matrix (or DI-Matrix) links the discretized fluence map (the bixels values)
and the discretized dose distribution within the patient (the dose on each voxel). This matrix
defines how the radiation from each individual bixel influences the dose delivered to every
voxel in the patient’s body.

We start by converting the 2D fluence map, composed of individual bixel values, into a
column vector b. Similarly, we represent dose distribution in the patient’s 3D space as a
vector d, where each entry corresponds to the dose in a specific voxel. The DI-Matrix L
governs the relationship between these vectors b and d via the matrix-vector multiplication
d = Lb 2. This mathematical operation computes the total dose at each voxel by summing
the contributions from all active bixels (here, we assume that the effect of bixels is linear).

The DI-Matrix is constructed by simulating the radiation delivered by each individual bixel.
For each bixel, the jaws of the multi-leaf collimator are virtually opened to allow only that
specific beamlet to go through. A radiation transport model calculates the dose deposited in
each voxel, considering the beam’s spread and attenuation as it travels through the body.
The resulting 3D dose deposition fills one column of the matrix L, corresponding to that
bixel’s influence on all voxels. Repeating this process for each bixel generates the entire
DI-Matrix.

The accuracy of the dose calculation depends on the precision of the DI-Matrix. Simple
models like pencil beam approximations, which assume a linear trajectory with minimal
scattering, are considered too coarse. In contrast, more advanced simulations, such as
Monte Carlo methods, provide a detailed and accurate dose calculation, although at a higher
computational cost. In this manuscript, we employ collapsed cone convolution techniques
(via TheraPanacea dose engine), which balance efficiency and accuracy.

3.2 Naive Optimization Method
A natural starting point in dose optimization is to attempt to directly achieve the delivery of a
uniform dose, equal to the prescription, on all voxels within the PTV, and no dose elsewhere.
We can attempt to find the bixels values delivering this dose by solving a least squares
problem. We attempt to find the fluence map b that minimizes the difference between the
actual dose d and the target dose dtarget, which is set to the prescribed dose within the PTV.

Formally, the optimization problem can be stated as:

min
b
∥dtarget − Lb∥2, b ≥ 0

2In practice, we compute d = L|b|, where |b| is absolute value of b element-wise to ensure positive
bixel values.
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where dtarget is the target dose vector, defined as follows for a prescription of pGy:

dtarget = p · 1PTV

Here, 1PTV is the indicator vector for PTV that is equal to 1 for voxels within the PTV and 0

elsewhere.

To solve this problem, we perform a least squares minimization to find the optimal fluence
map b, where the matrix-vector multiplication Lb yields the dose distribution d across the
entire patient volume.

However, this method is often inadequate in practice, as it attempts to solve the system
based solely on the prescribed dose within the PTV, while neglecting any constraints on
doses to the organs at risk. Since no constraints are imposed on the OAR doses, this
naive optimization can result in high doses to critical structures, leading to unacceptable
treatment plans. As a result, more sophisticated optimization methods that incorporate
dose constraints on OARs and account for dose-volume constraints are necessary to achieve
clinically viable treatment plans.

3.3 Constraints and Importance Factors
In order to obtain clinically acceptable doses, we need to incorporate the clinical aims in
the optimization.

3.3.1 Constraints Formulation
Different organs exhibit varying sensitivities to radiation, which influence their dose toler-
ance limits [111] [82]. Normal tissues are categorized as serial, parallel, or mixed, based on
the functional organization of their sub-units. This classification determines the appropri-
ate absorbed dose limits for normal tissues.

Serial organs (figure 3.2a), such as the spinal cord or esophagus, are characterized by a
functional dependence on the integrity of every sub-unit. Damage to even a tiny region
in these tissues can result in the loss of the organ’s overall function. In contrast, parallel
organs (figure 3.2b), such as the lung or liver, possess a reserve capacity where damage
to a portion of the tissue does not necessarily impair overall function, as long as a critical
volume remains intact.

We define two DVH value measures, VX Gy and DX%, for a structure S. For a given dose
d : R3 → R+, VX Gy is defined as the volume of the three dimensional structure S ⊆ R3 that
receives a dose equal to or higher than X Gy, that is:

VX Gy =
Vol

({
p ∈ S ⊂ R3 | d(p) ≥ X

})
Vol (S)

.
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(a) Organ functioning in a serial-like way.
(b) Organ functioning in a

parallel-like way.

Figure 3.2: Organs functioning types.

This formula can be approximated using the discretized dose on voxels d:

VX Gy ≈
#{v ∈ S | dv ≥ X}

# {v ∈ S}

with v ∈ S voxels of the structure S, dv the dose of d associated with voxel v, and # refers
to voxel count.

Similarly, we define DX % as the minimal dose (in Gy) delivered to the X% most irradiated
region of the structure, that is:

DX % = min {d(p) | p ∈ SX %}

where SX % ⊆ S is the X% most irradiated region of S. Again, it can be approximated using
the discretized dose on voxels d:

DX % ≈ min {dv | v ∈ SX %}

where v ∈ SX % are the X% most irradiated voxels of S.

For parallel-like structures, dose–volume reporting specifying VD Gy is commonly used, with
DGy adapted to the specific organ. For instance, [51] demonstrated a correlation between
the incidence and severity of lung pneumonitis and V20Gy, the volume of the lung receiving
more than 20Gy. In parallel-like structures, the median absorbed dose (D50%) provides a
valuable measure of the total dose delivered to the organ at risk.

For serial-like organs, it is recommended to report D2% as the maximum absorbed dose, as
D0% is subject to noise.

Finally, for organs with a mixed parallel-serial structure, it is advised to report D50%, D2%,
and VD Gy, with DGy selected based on the threshold beyond which there is a significant
risk of serious complications.

3.3.2 Optimization Problem
After the doctors have formulated maximal dose constraints for each OARs, and PTV cover-
age constraints C, we can formulate the mathematical optimization problem.
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(a) Irradiation of organs at risk with one
heat point.

Treatment Dose

Post Treatment

(a1) Serial organ dies.
(a2) Parallel

organ survives.

(b) Irradiation of organs at risk with spread
heat dose.

Treatment Dose

Post Treatment

(b1) Serial organ
survives.

(b2) Parallel
organ dies.

Figure 3.3: Irradiation type survival of organs serial-like and
parallel-like.

Constraints c ∈ C are formulated as c = (S,D, V,±) where D is in Grey, V is a %, and ±
means the constraint is maximal/minimal.
E.g.: cPTV+ = (PTV, 76Gy, 95%, +) means that for the PTV structure, we need D95% ≥ 76Gy
(or, equivalently, V76Gy ≥ 95%); this is a very typical constraint [149]. This constraint example
is illustrated in figure 3.4c and 3.4d.
E.g. (bis): corgan = (organ, 25Gy, 20%, −) means that for the ’organ’ structure, we need
D20% ≤ 25Gy (or, equivalently, V25Gy ≤ 25%). This constraint example is illustrated in figure
3.4a and 3.4b.

We only calculate a voxel-discretized version d of the dose d : R3 → R+, using a bixel-
discretized version b of the fluence maps fθ : R2 → R+ for each selected angle θ. Hence, we
formulate the optimization problem on the discretized information.

Ideal Case In the ideal case, it is possible to meet all constraints, and we try to minimize
further the dose d on the OARs. Mathematically, we find the values for b giving dose d = Ld
such that all DVH constraints C are satisfied, and

∑
v∈OARs d

2
v is minimum (where dv is the

dose on voxel v, and v ∈ OARs are the voxels v belonging to an OAR):

min
b

∑
v∈OARs

d2
v with d = Lb, b ≥ 0 and such that ∀c ∈ C, c is satisfied.

Practical Case In practice, constraints formulated by the doctors are too hard to satisfy.
Hence, we create one objective function fc for each constraint c ∈ C, which decrease as we
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(a) Maximal dose constraint not met.
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(b) Maximal dose constraint met.

0 20 40 60 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

(%
) V76 Gy

D95%

(c) Minimal dose constraint unmet.

0 20 40 60 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

(%
)

D20% = 25 Gy
V25 Gy = 20%

(d) Minimal dose constraint met.

Figures 3.4a, 3.4b: Typical DVH of an OAR, with visualization
of the maximal dose constraint D20% ≤ 25Gy (or V25Gy ≤ 20%).
Figure 3.4c, 3.4d: Typical DVH of a PTV, with visualization of

the minimal dose constraint D95% ≥ 76Gy (or V76Gy ≥ 95%).
Note that dose-volume objectives then turn to points on

dose-volume histograms. The relevant DVH curve must stay
above (in the case of a minimal dose constraint), or under (in
the case of a maximal dose constraint) this point to pass the

constraint.
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get closer to satisfying the constraint. The optimization problem becomes:

min
b

∑
c∈C

wcfc(d) with d = Lb, b ≥ 0

with wc importance factor of constraint c.

Penalization functions Given a constraint c = (S,DGy, V %,±), multiple approaches
can be considered for defining an objective function fc. Here, we explore three commonly
used methods (also visually explained in figure 3.5):

1. Penalizing the lower 100 − V % dose voxels: This method penalizes a fixed number
of voxels but tends to be noisy since the lower V% voxels can fluctuate with each
optimization iteration.

2. Penalizing voxels with dose > DGy: This approach yields a convex objective function.

3. Penalizing the lower 100 − V % dose voxels with dose > DGy: This method is the
most advanced method; Note that once the constraint is satisfied, no voxel is penalized.
However, for the same reason as the first approach, this penalization remains prone
to noise.

Turning off penalization is possible once a constraint is met (this is useful for the first
two methods presented above). In our implementation, we chose not to do so, so when a
constraint is on the edge of being met, the penalization does not turn on and off every other
optimization iteration.

Once the set of penalized voxels is selected, the penalization power p must be determined,
with typical choices being p = 1 or p = 2. We opt for penalizing voxels with a dose greater
than DGy and set p = 2. This choice makes the objective function convex a weighted sum of
convex functions. Desirable properties, such as the existence of a unique global minimum
once the values of wc are fixed, follow from the convexity of the objective function.

Finally, the mathematical formulation of the objective function associated with the con-
straint c = (S,D, V,±) is:

fc(d) =
∑
v∈S

(dv −D)2+ .

The global minimization problem becomes

C(w,d) with d = Lb, b ≥ 0

where w = {wc | c ∈ C}, the set weights or importance factors of each constraint, are to be
determined, and

C(w,d) = min
b

∑
c∈C

wc

∑
v∈S

(dv −D)2+

is the total cost function. Note that the problem changes as w evolves. It is by adjusting w

that dosimetrists may guide the optimizer towards a clinically acceptable plan.
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(a) Penalizations of constraint D20% < 25Gy on a structure of 10 voxels.
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(b) Penalizing the lower 20%
dose voxels.
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(c) Penalizing voxels with
dose greater than 25Gy.
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(d) Penalizing the lower 20%
dose voxels with dose greater

than 25Gy.

Figure 3.5: Typical penalization of a dose on an OAR according
to the maximal dose constraint D20% ≤ 25Gy.
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Bixel regularization For optimal leaf sequencing, it is preferable to have smooth bixel
values, meaning that adjacent bixels should have minimal variation in their values. A reg-
ularization term was incorporated to achieve this, penalizing discrepancies in bixel values
relative to their neighboring bixels using a squared penalty function.

3.3.3 Balancing the Importance Factors
The importance factors wc play a crucial role in the optimization process. These weights
allow dosimetrists to prioritize certain clinical constraints over others. Properly balancing
these factors ensures that the most critical aspects of the treatment plan are emphasized
while still striving to meet all constraints.

The constraints associated with the PTV, ensuring the destruction of the tumor, conflict
with the protection of the OARs. Hence, the optimization process becomes a trade-off be-
tween satisfying different constraints. For example, increasing the dose of the PTV will
inadvertently increase the dose of nearby OARs. Carefully tuning of the importance factors
ensures that the optimization algorithm directs the fluence maps towards a solution that
balances the therapeutic benefits with the risk of complications.

Due to the unique geometry of each patient, an optimal dose plan cannot be applied uni-
versally. The optimization must be recalculated for every patient. Dosimetrists customize
the dose to meet the specific needs of each individual patient by taking into account clinical
priorities, spatial relationships, and physician expertise. This process is time consuming,
and remains manual; this manuscript tackles the problem of treatment planning.

The contouring task used to be a manual operation but is now done automatically, thanks
to the progress of artificial intelligence on segmentation tasks [59] [32]. After the emergence
of AI for contouring, this manuscript tackles the problem of automatic treatment planning.

3.4 Dose Mimicking
Dose mimicking is a technique used to reproduce a dose distribution as closely as possible.
This task is typically needed when a patient changes machine: the leaves might not have
the exact same shape, and their movements (the treatment plan) must be recalculated.
However, the optimal 3D dose spread remains the same, and one only needs to replicate it
(or mimic it) with another machine.

Hence, dose mimicking involves the optimization of a new treatment plan to match the
dose profile of an existing plan, which is typically derived from either a prior treatment or
a reference plan considered clinically acceptable. This differ from the naive approach in
section 3.2: the dose distribution that we try to replicate is not manually set. The target
dose was achieved before either on the same machine, or on a similar MLC. Hence, the task
of mimicking it should be "easier".
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Formally, the optimization problem can be stated the same way as in section 3.2:

min
b
∥dtarget − Lb∥2

with dtarget the previously target dose, instead of the manually defined one.

3.5 Optimization Algorithm Review for Dosimetry
The selection of an optimization algorithm is critical. Different algorithms may converge to
various local minima when dealing with non-convex objective functions, potentially leading
to significant outcome variations. To mitigate this issue, we have designed the objective
function to be convex, ensuring all optimization methods converge to the same global mini-
mum. In this study, we benchmark the computational complexity and convergence rates of
various algorithms. These findings are intended to provide valuable insights for the devel-
opment of TPS.

3.5.1 Data
We focused on evaluating the various open-source optimizers. We used the widely recog-
nized TG-119 [85] cases as a benchmark for evaluating radiation therapy plan optimization.
The TG-119 dataset provides specific dose goals, which we incorporated into our proposed
cost function. The TG-119 multiple PTVs is a theoretical case unlikely to happen in real
life. However, the other cases represent a comprehensive set of what dosimetrists could
encounter daily.

We also used one typical case of prostate cancer from ICM. For this case, doctors had pro-
vided specific dose goals that we again incorporated into our proposed cost function.

3.5.2 Open-source Optimizers
We tried to have a comprehensive set of available open-source optimizers.

(Stochastic) Gradient Descent Is an optimization algorithm that iteratively updates
the model parameters in the direction of the negative gradient of the objective function. In
our case, it is not stochastic since it calculates the gradient using the current solution3 [49].

Conjugate Gradient Is an iterative optimization algorithm commonly used to solve sys-
tems of linear equations or quadratic optimization problems. It iteratively computes con-
jugate directions and updates the solution along them, aiming to minimize the objective
function [47]. Conjugate Gradient is often applied in scenarios where the Hessian matrix
is unavailable or computationally expensive.

3Our objective function has all its inputs as parameters, so there is no notion of stochasticity.
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Newton Newton’s method is an iterative optimization algorithm that uses the second-
order derivative (Hessian matrix) to find the minimum of a function. It updates the cur-
rent estimate by considering both the first-order derivative (gradient) and the second-order
derivative [90].

SLSQP (Sequential Least Squares Programming) is a sequential quadratic programming
algorithm for constrained optimization. It iteratively solves a sequence of quadratic pro-
gramming subproblems to find the optimal solution subject to constraints [11].

RMSprop (Root Mean Square Propagation) is an optimization algorithm that addresses
the problem of diminishing learning rates in traditional gradient descent methods. It divides
the learning rate by the root mean square of the past gradients, which helps to stabilize and
speed up convergence [48].

BFGS-based

Pure BFGS (Broyden-Fletcher-Goldfarb-Shanno) is a quasi-Newton method that approx-
imates the Hessian matrix using updates based on gradient information. It performs a line
search to determine the step size that minimizes the objective function along the search
direction [39].

L-BFGS (Limited-memory BFGS) is a variation of BFGS that uses a limited-memory ap-
proach to approximate the Hessian matrix. It stores a limited number of past gradient and
parameter values to compute an approximate inverse Hessian matrix efficiently [72].

Adam-based

Pure Adam (Adaptive Moment Estimation) is an optimization algorithm combining ideas
from adaptive learning rates and momentum methods. It computes adaptive learning rates
for each parameter based on estimates of the first and second moments of the gradients
[60].

RAdam (Rectified Adam) is a variant of the Adam optimizer that introduces a rectification
term to stabilize the adaptive learning rate. It aims to address some convergence issues that
may occur in Adam by dynamically adjusting the variance of the adaptive learning rate [73].

NAdam (Nesterov Adam) combines the Nesterov accelerated gradient method with the
Adam optimizer. It incorporates Nesterov momentum into the Adam update rule to improve
convergence and provide better generalization [127].
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AdamDelta Is another variant of the Adam optimizer that replaces the second moment
estimates (variance) with a delta parameter. It eliminates the need for storing and updating
the moving average of the squared gradients, which can be beneficial in memory-constrained
settings [147].

Adamax Is an extension of the Adam optimizer that uses the gradients’ infinity norm (max
norm) instead of the L2 norm. It is designed to handle sparse gradients more effectively and
can be particularly useful in deep learning models [9].

Rprop (Resilient Backpropagation) is an optimization algorithm specifically designed for
neural networks. It adaptively updates the weights based on the gradient sign, adjusting the
step size. Rprop performs weight updates independently for each weight parameter [107].

Other optimizers variations In addition, we tested AdamW, Adagrad, and ASGD. How-
ever, AdamW and Adagrad behaved similarly to Adam, and ASGD behaved similarly to SGD.
For readability purposes, we did not include them in the results plots.

3.5.3 Results
Newton’s method Based on the iterations-wise graph analysis, Newton’s method per-
forms best, consistently achieving a stable converged state within ten steps across all four
examined cases. However, Newton’s method steps are computationally expensive since it
uses a second-order derivative (the Hessian) that is difficult to compute.

It is widely recognized that Newton’s method excels in optimizing convex functions [97]. Our
objective function is convex by construction; hence, this optimization algorithm is particu-
larly effective.

LBFGS vs BFGS It would be expected that BFGS performs better than LBFGS in terms
of iterations but not in terms of time (since LBFGS is a fast approximation of the BFGS
technique). However, we observe that LBFGS outperforms BFGS even on the iterations-
wise graph. This performance suggests that the limited memory approximation is biased
towards suitable directions in these problems.

Best Algorithms Besides Newton’s method, three algorithms have similar performances:
Adam, Adamax, and LBFGS. Adam and Adamax appear to have more "wavy" cost curves,
while LBFGS cost decreases more stably. These observations are valid both in terms of
iteration and time.

TGG 119 Multiple PTVs (figure 3.6a) is the smallest problem, and the real ICM prostate case
(figure 3.6d) is the largest problem (in terms of patient/organs/structure volume size); TGG
119 fake head and neck (figure 3.6b) and TGG 119 fake prostate (figure 3.6c) have similar
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(a) TGG 119: Multiple PTVs.

(b) TGG 119: Head and Neck.

(c) TGG 119: Prostate.

(d) Prostate from ICM (Institut régonal du Cancer de Montpellier).

Figure 3.6: Evolution of the objective function value (’cost’)
through optimization iterations and computation time for four

typical dosimetry cases.
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sizes. Notably, an observable trend indicates that as the problem size increases, LBFGS
outperforms both Adamax and Adam optimization algorithms.

Therefore, we will use the LBFGS algorithm in the rest of this manuscript.

3.5.4 Discussion
In the future, if new techniques are developed making computing the Hessian much faster,
we recommend using Newton’s optimization algorithm. However, to our knowledge, com-
puting the Hessian remains intrinsically long, not only in our implementation.

Hence, we recommend using the LBFGS algorithm for the problem of dose optimization in
radiotherapy; it is the fastest to converge and converges steadily on the tested cases.





Doses Relationship

Abstract

Fluence Map Optimization (FMO) requires selecting importance factors for each clinical
constraint, which reflect the relative priority of achieving specific dose goals. These im-
portance factors significantly influence the resulting dose distribution, as varying their
values can lead to diverse treatment outcomes. This chapter investigates the relation-
ship between the chosen importance factors and the resulting dose distributions. We
aim to understand how different configurations affect the trade-offs between conflicting
clinical objectives. This analysis provides insight into optimizing importance factors to
achieve the most clinically effective treatment plans.
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4.1 Distance Between Doses
In this section, we aim to establish a robust metric for quantifying the distance between
different dose distributions. Such a distance should provide a numerical comparison that
reflects the clinical discrepancies between two dose distributions. By developing a distance
measure that captures these nuances, we can better evaluate and compare treatment plans.

A non-trivial task Quantifying the difference between two dose distributions, particu-
larly regarding clinical impact, is inherently challenging. This complexity arises because
not all patient anatomy regions contribute equally to treatment outcomes. Dose variations
in critical structures may significantly influence clinical effects, while similar variations in
less critical areas may have negligible impact. Moreover, the potential for dose compensation
(underdosing in one region counterbalancing overdosing in another) further complicates the
development of a reliable metric for comparing dose distributions. This compensatory ef-
fect is only sometimes applicable, making establishing a standardized method for assessing
dose distribution clinical differences challenging.

Dose Evaluation To assess the quality of a dose distribution, dosimetrists primarily
focus on DVHs as the key information. While they also consider aspects of the three-
dimensional (3D) dose distribution, such as inter-structure dose gradients and the pres-
ence, number, and location of hot spots, their primary attention is directed towards the
analysis of DVHs, which provide a comprehensive overview of dose coverage and sparing of
organs at risk.

4.1.1 Method
Naive Doses Comparison The most straightforward method for comparing two dose
distributions, thus defining a distance metric, is to perform a voxel-by-voxel comparison
of the dose values. However, this approach overlooks the inherent anatomical structure
of the human body and the fact that not all voxels have the same clinical significance.
Consequently, even if the voxel-wise distance between two dose distributions is considerable,
their overall clinical effects may still be similar.

Pathological example We constructed a simplified example, as illustrated in Figure 4.1.
This hypothetical scenario involves a phantom model consisting of a homogeneous water-
equivalent material containing a cubic planning target volume (PTV) and a cubic organ-
at-risk (OAR). Although this model lacks anatomical realism, it effectively highlights the
limitations of using basic voxel-wise comparisons for dose evaluation. It emphasizes the
need for more sophisticated techniques to capture clinically relevant differences in dose
distributions accurately.
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(a) 3D visualization of the two doses on
the phantom body.

(b) 2D view of the bixels activation of the two
doses.

(c) Dose-Volume Histograms of the two doses on the phantom body.

Figure 4.1: Example of two doses that have the same clinical
effect (measured from the DVHs), but very different voxel-wise

dose values.
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4.1.1.1 Doses Samples

We assessed the efficacy of our proposed method for comparing radiation doses using the
TG-119 Prostate case, a well-established benchmark for evaluating radiation therapy plans
[85]. The TG-119 dataset includes predefined dose objectives, which we utilized to formulate
our cost function. We performed optimizations with different weight assignments applied to
each constraint to generate varying treatment dose distributions for the same patient case
under identical constraints.

4.1.1.2 Distances Between Doses

Comparing Doses Voxel-wise When two radiation dose distributions are closely aligned,
the voxel-wise comparison is an effective measure, as it can be assumed that the global dis-
tribution is similar. This approach allows for a detailed comparison of local dose variations.
Mathematically, given the voxel-wise dose d, the distance between two dose distributions,
d1 and d2, is defined as the norm of their difference:

∑
v∈V |d

1
v − d2

v|, where v represents
the voxels in the set of interest V, and di

v is the dose value at voxel v for dose distribution
di 1. However, voxel-wise distance can become misleading if two regions of equal volume
within the same anatomical structure have their dose values swapped. In such cases, the
voxel-wise difference would appear large despite the clinical equivalence of the two doses.
Furthermore, this method is limited to comparing doses within the same patient, as it re-
quires a direct correspondence between the dose voxels in both distributions.

Comparing Dose Volume Histogram Curves We propose comparing the Dose Vol-
ume Histogram (DVH) curves. We have one curve for each structure; we define the distances
between doses for each structure, and in the end, we sum up all structures to end up with
a single scalar distance between two doses. We can quantify the variation between the two
dose distributions in aggregated forms, using the structures.

Discrete DVH Approximation The DVH is obtained after sorting the voxel-wise dose
of the structure: Let d [s] bet the voxel-wise dose of the structure s (therefore, a list, of
length n [s], the number of voxels that belong to the structure). Let ˙d [s] be the list above
in descending order (i.e. ˙d [s]i > ˙d [s]j if 0 < i < j ≤ n [s]). Then, the DVH of s can be
approximated by the continuous line composed of the segments linking the following points:(

˙d [s]i, i/n [s]
)

0 < i ≤ n [s]. Since we compute the dose voxel-wise, we may only have an
approximation of the DVH. However, in practice, most structures of interest have more than
a hundred voxels, which makes the DVH approximation very precise.

Since we draw one curve per structure of interest, this capture some of the importance of
voxel over others. In fact, when analyzing a dose, doctors look at the dose volume (voxel-
wise), but they also take a close look at the DVHs; this is an incentive that DVHs should
contain meaningful information.

1This is often written as |d1 − d2|, with the summation over voxels implied.
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Distance Measure To measure how different two DVH curves, we can imagine several
techniques:

• Fréchet distance (treating DVHs as curves in a 2D space)

• Hausdorff distance (treating DVHs as 1D manifolds in a 2D space)

• Wasserstein distance (treating DVHs as probability distributions)

• Kolmogorov-Smirnov test (treating DVHs as probability distributions)

• Total variation between curves (treating DVHs as functions)

We evaluated all the aforementioned distance metrics and propose to retain only the one
that yields the most clinically meaningful results.

Fréchet Distance DVH (Dose-Volume Histogram) curves can be interpreted as lines in
R2 2. In this context, the Fréchet distance is a well-known metric for assessing the similar-
ity between two curves, particularly useful for comparing poly-lines [34]. It measures the
minimum distance a particle would travel when simultaneously traversing both curves. In
this study, we apply the Fréchet distance to compare the DVH curves of two radiation dose
distributions.

Formally, let P and Q represent the curves being compared, with γ denoting a parametriza-
tion defined on the interval [0, 1]. The positions of a particle moving along curves P and Q

at time t are given by P (γ(t)) and Q(γ(t)), respectively. The Fréchet distance is defined as:

dFréchet(P,Q) = inf
γ

max
t∈[0,1]

d(P (γ(t)), Q(γ(t)))

When applied to DVH curves, let CA and CB denote the discrete DVH curves of two dose distri-
butions. These curves consist of line segments connecting a series of points {CA(i) = (di, vi), 1 ≤ i ≤ nA}
and

{
CB(j) = (d̃j , ṽj), 1 ≤ j ≤ nB

}
; where di and d̃j denote the dose levels3, vi and ṽj repre-

sent the corresponding volumes, and nA and nB are the number of points forming CA and
CB4.

The Fréchet distance, in this case, is defined as the infimum over all possible traversal times.
Given that the curves are discrete line segments, the Fréchet distance can be expressed as:

dFréchet(CA, CB) = min
j:J1,nAK→J1,nBK
j↗ (j increasing)

nA∑
i=1

dist (CA(i), CB(j(i)))

2In the case of voxel-wise dose approximations, they are represented as poly-lines in R2.
3Derived from d after selecting voxels of the structure of interest, and sorting voxels.
4Here we are constantly comparing two DVH curves of the same structure on the same patient,

so we always have nA = nB.
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where dist (CA(i), CB(j(i))) =
√

(di − d̃j(i))2 + (vi − ṽj(i))2

Here, j represents a (discrete) a parametrization, and dist (CA(i), CB(j(i))) is the distance
between points CA(i) and CB(j(i)).

One drawback of the Fréchet distance is its computational expense, particularly for struc-
tures with a large number of voxels. To mitigate this, we applied the Ramer–Douglas–Peucker
algorithm for curve simplification [98]. We employed this algorithm with ϵ = 0.05, and after
testing on a subset of DVH curves, it was found to accelerate computations by a factor of
3-5, while the calculated Fréchet distance deviated by less than 0.5%. This method was
therefore used in the results presented below.

Hausdorff Distance The Hausdorff distance is another commonly used metric for mea-
suring the similarity between two curves [46]. It is defined as the greatest of the shortest
distances between any point on one curve and the closest point on the other. Formally,
let X and Y be two non-empty sets; the Hausdorff distance between X and Y , denoted
dHausdorff(X,Y ), is given by:

dHausdorff(X,Y ) = sup
x∈X

inf
y∈Y

dist(x, y)

where dist(x, y) represents the distance between points x and y (typically, the Euclidean
distance).

In this study, we treat DVH (Dose-Volume Histogram) curves as sets of points in a two-
dimensional space R2, using the Hausdorff distance to quantify their difference. Using the
same notation for the DVH curves CA and CB as previously defined, the discrete Hausdorff
distance is computed as:

dHausdorff(CA, CB) = max
i∈J1,nAK

min
y∈CB

dist(CA(i), y)

where CB is represented by the set of points{(
(1− λ)d̃j + λd̃j+1, (1− λ)ṽj + λṽj+1

)
| λ ∈ [0, 1] , j ∈ J1, nB − 1K

}
.

Wasserstein Distance The Wasserstein distance, also known as the Earth Mover’s Dis-
tance, is a metric used to quantify the difference between two probability distributions
[92]. Formally, given two probability distributions µ and ν defined on a metric space X,
the Wasserstein distance, denoted dWasserstein(µ, ν), represents the infimum cost of trans-
porting the mass of distribution µ to match distribution ν, where the transportation cost is
determined by the distance metric dist on X. It is defined as:

dWasserstein(P,Q) = inf
γ∈Γ(µ,ν)

E(x,y)∼γ [dist(x, y)]

where Γ(µ, ν) represents the set of all possible joint distributions γ(x, y) with marginals µ

and ν.
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In our analysis, we treat DVH (Dose-Volume Histogram) curves as probability distributions
and employ the Wasserstein distance to assess their differences. This metric has the distinct
advantage of capturing both local and global variations between the curves, offering a more
comprehensive comparison. However, it can be computationally demanding, particularly
when dealing with DVHs of large anatomical structures.

Kolmogorov-Smirnov Distance Another distance metric commonly used to compare
DVH curves is the Kolmogorov-Smirnov (KS) distance [124]. The KS distance measures
the maximum vertical separation between two curves and is particularly well-suited for
comparing non-parametric distributions, such as DVH curves.

Mathematically, let the two DVH curves be represented by functions f and g, mapping dose
levels to volume ratios. The KS distance, dKS, is then defined as:

dKS = sup
x∈R+

|f(x)− g(x)|.

In the case of discrete DVH data, f and g are piecewise linear, continuous functions from
R+ to [0, 1], with their values set to zero beyond the maximum dose level.

Total Variation Distance We propose a distance metric that computes the integral of
the absolute difference between two DVH (dose-volume histogram) curves. This metric is
straightforward to compute and provides a balanced measure of local and global differences
between the curves [18]. Additionally, it is computationally efficient and well-suited for
analyzing large structures with many voxels. This approach yielded the most consistent
and clinically relevant results among the metrics tested. As such, we selected this distance
measure for our analysis.

Traditionally, the total variation distance is defined as the integral of the absolute difference
between two DVH curves. While the dose domain is theoretically unbounded, the volume
domain is bounded between 0% and 100%. To avoid integrating over an unbounded dose
domain, we opted to reverse the axes, placing dose on the y-axis and volume on the x-axis
and subsequently integrating the absolute difference in dose over the volume range [0, 1].

Mathematically, standard DVHs are described by V : R+ → [0, 1]. For two DVHs V (d) and
Ṽ (d), the total variation distance is given by:

dTotalVariation =

∫ +∞

0
|V (d)− Ṽ (d)| dd

However, in our approach, we express DVHs with dose as a volume function, denoted D :

[0, 1]→ R+. Thus, for two DVHs D(v) and D̃(v), the total variation distance becomes:

dTotalVariation =

∫ 1

0
|D(v)− D̃(v)| dv



4.1. DISTANCE BETWEEN DOSES 61

0 20 40 60 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

(%
)

DVHs of two similar doses

0 20 40 60 80
Dose (Gy)

0

2

4

6

8

10

12

Vo
lu

m
e 

(%
)

Difference between DVHs
PTV
Prostate
Urinary_bladder
Rectum

(a) Classical DVH (dose on the x-axis).
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(b) Flipped axes DVH (volume on the x-axis).

Figure 4.2: DVHs: Comparison of classical and flipped axes
styles.

While the theoretical value of the integral remains unchanged, we prefer integrating over the
finite volume domain 0, 1] instead of the unbounded dose domain R+ = [0,+∞[. An illustra-
tion highlighting the differences between the classical DVH and the version with swapped
x- and y-axes is presented in Figure 4.2. The two compared doses were optimized on the
TG-119 phantom prostate case, using different weights (1 and 3) for the PTV objective.

As Figure 4.2 shows, the difference between DVHs exhibits less noise (fewer fluctuations)
when the dose is on the x-axis. This observation suggests a reduction in numerical error,
providing additional motivation to place the volume on the x-axis.

Computing the total variation distance is computationally efficient, requiring only O(ns)

operations per structure, where ns represents the number of voxels in the structure of in-
terest, s. Overall, this method achieves a good balance between capturing local and global
differences in DVH curves.
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Figure 4.3: Pairwise distances between doses
(with different distances calculation method)

4.1.2 Results
4.1.2.1 Dose Distances Comparison

We optimized each constraint with all weights initially set to 1 but sequentially increased
one to 3, 10, and 100. This process resulted in 18 distinct dose distributions, which were
compared using the distance metrics described earlier. We calculated the pairwise distances
for each pair of doses, effectively constructing the adjacency matrix of a fully connected
graph, where each optimized dose corresponds to a node. See Figure 4.3 for comparing the
adjacency matrices.

Ideally, the distance metric should satisfy the following criteria:

• It should match the voxel-wise distance when the voxel-wise difference is small.

• It should remain small in cases where the voxel-wise distance is significant. However,
the clinical significance of the two doses is similar, even if the doses are voxel-wise
different.

From the pairwise distances shown in Figure 4.3, we make the following observations:

• The Fréchet and Hausdorff distances behave similarly to the voxel-wise distance, in-
dicating that they are too sensitive. Thus, they are not suitable for our purpose.

• The Kolmogorov-Smirnov distance appears to degenerate, likely capturing noise due
to numerical approximations in the DVH calculations. Therefore, it is also not suitable
for our purpose.

• The Wasserstein and Total Variation distances produce more clinically relevant results.
As a result, we chose to focus further analysis on these two metrics.

4.1.2.2 Link between Total Variation and Wasserstein

The adjacency matrices for the Wasserstein and Total Variation distances exhibit substantial
similarity. This similarity is expected, as the two metrics are equivalent in this context, given



4.1. DISTANCE BETWEEN DOSES 63

that we employed the Earth Mover’s Distance (Wasserstein distance with p = 1). The Total
Variation distance can be regarded as a particular case of the Wasserstein distance.

The Wasserstein distance, also known as the Earth Mover’s Distance, provides a metric
for quantifying the distance between two probability distributions. Let X and Y be two
distributions with cumulative distribution functions (CDFs) F and G, respectively. The
Wasserstein distance between them is formally defined as:

Wp(F,G) = inf
π∈Π(F,G)

(∫∫
x,y∈R2

|x− y|pdπ(x, y)
)1/p

where Π(F,G) represents the set of all possible joint distributions with F and G as marginals.

In contrast, the Total Variation distance between the two curves F and G is defined as:

TotalVariation(F,G) =

∫
x∈R
|F (x)−G(x)|dx

When the Wasserstein distance is computed with p = 1, it becomes equivalent to the Total
Variation distance:

W1(F,G) ≡ TotalVariation(F,G).

Thus, the only expected differences between these two distance metrics in our analysis
should arise from numerical errors.

4.1.2.3 Bounding of Total Variation and Voxel Distance

The Voxel Distance can bound the Total Variation distance. However, the reverse is im-
possible, as illustrated by the example in the introduction, where two doses exhibit nearly
identical dose-volume histograms but significantly different voxel-wise distances.

In the following, we provide a bound for the Total Variation distance of a single DVH, which
can be generalized to the sum of the Total Variation distances across all DVHs.

This proof demonstrates that while the Voxel Distance constrains the Total Variation dis-
tance, the converse does not hold, especially when voxel-wise variations do not translate to
clinically meaningful differences in the global dose distribution.

We aim to compare two dose distributions on a structure, d and d̃ (we suppose that d and d̃

are lists containing only the values on the voxels of the structure).

Sorting lists

Lemma 1. Let l̇, l∗ ∈ Rn. Let l̇ be sorted and l̇∗ ∈ Rn be sorted version of l∗. Then, we have:

|l̇ − l∗| ≥ |l̇ − l̇∗|



64 CHAPTER 4. DOSES RELATIONSHIP

0 10 20 30 40
Voxel-wise distance

0

2

4

6

8

10

12

14

DV
Hs

 T
ot

al
 V

ar
ia

tio
n 

di
st

an
ce

(a) DVHs Total Variation vs Voxel-wise.

0 2 4 6 8 10 12 14
DVHs Wasserstein distance

0

2

4

6

8

10

12

14

DV
Hs

 T
ot

al
 V

ar
ia

tio
n 

di
st

an
ce

(b) Total Variation vs Wasserstein.

Figure 4.4: Comparing Distances

Proof. Suppose a < b and c < d, and WLOG, a ≤ c.
We have |a− d| = |a− c| + |c− d| so |a− d| + |b− c| = |a− c| + |c− d| + |b− c| using triangle
inequality (|c− d|+ |b− c| ≥ |b− c|): |a− d|+ |b− c| ≤ |a− c|+ |b− d|.
Thus, with l̇ sorted, swapping elements li and lj (i < j) of l∗ decreases |l̇ − l∗| if li ≥ lj.
Applying, bubble sort on l∗, we obtain l̇∗ doing only permutations satisfying the condition
just stated.

Hence, we obtain |l̇ − l∗| ≥ |l̇ − l̇∗| at the end of the bubble sort.

Corollary 1. Let l, l∗ ∈ Rn. Let l̇, l̇∗ ∈ Rn be sorted version of l, l∗. Then:

|l − l∗| ≥ |l̇ − l̇∗|

Proof. The order in which we perform |l − l∗| =
∑n

k=1 |lk − l∗k| can be chosen, so |l − l∗| =∑n
k=1 |lσ(k) − l∗σ(k)| (with σ a permutation of J1, nK). Taking σ such that lσ(i) ≤ lσ(j) for i < j and

using lemma finishes the proof.

Proof Outline Suppose the voxel-wise difference is ε-small (i.e. |di − d̃i| < ε). Then, the
total variation of the unsorted vector doses is |d− d̃| < nSε. Let ḋ be sorted d and ˙̃

d be sorted
d̃. Then, by Corollary 1, we have: |ḋ− ˙̃

d| ≤ |d− d̃| < nSε.

Therefore, if d and d̃ are sufficiently close, ε→ 0 and |ḋ− ˙̃
d| → 0.

Conclusion Thus, voxel-wise very close doses distributions will also have close DVHs
distances, which ensure DVHs distances are non-degenerative.
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4.1.2.4 Distances Distribution Comparison

Comparing Total Variation and Voxel-wise The bounding of the total variation DVH
distance in terms of voxel-wise distance is clearly illustrated in Figure 4.4a, where a linear
upper bound can be observed in the scatter plot. However, specific pairs of doses are closer
regarding DVH distance than initially anticipated based solely on voxel-wise comparisons.
This observation underscores the need for a more nuanced analysis beyond voxel-wise com-
parison, as it may overlook clinically relevant similarities between dose distributions.

Comparing Total Variation and Wasserstein Figure 4.4b shows that the two DVH
distances are nearly perfectly proportional. This result aligns with expectations, given that
they are mathematically equivalent. The only difference lies in the integration axis in the
total variation distance, which accounts for the small fluctuations observed, likely due to
accumulated numerical error.

4.1.3 Discussion
In this section, we introduce a novel metric for comparing radiation doses. This metric
offers the advantage of being insensitive to dose changes in certain regions, provided they
are compensated in other regions, thus achieving the intended objective. This property
makes the metric particularly useful in various applications, including dose mimicking and
determining early stopping criteria for fluence map optimization.

Despite the advantages, this distance metric has certain limitations. A notable drawback is
its inability to capture spatial dose distribution, which may pose challenges in specific cases.
Pathological examples exist where two DVHs appear similar, but the clinical interpretation
differs significantly. Other factors, such as the spatial distribution of the dose within the
target volume or surrounding tissues, can play a pivotal role in the treatment’s effectiveness.
To cover this, incorporating hot points in the metric could help. However, it remains to be
seen how to do it in a clinically meaningful way.

For instance, two dose distributions might deliver the same high dose, with one distributed
across several small regions and the other concentrated in a single large region. While
the DVHs may appear identical, clinicians would interpret these two dose distributions
differently. Such edge cases, however, are sporadic in clinical practice. Nonetheless, for
critical cases, we recommend complementing this metric with voxel-invariant approaches
and other techniques to evaluate the radiation doses comprehensively.

When comparing two distinct doses, a considerable distance between them may indicate
a significant difference in the intensity or frequency of the treatment. However, this does
not necessarily imply that one dose is superior. The effectiveness of a dose depends on
several other factors, such as the individual patient’s characteristics, medical history, and
treatment response.
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The distance between two doses does not assess which is more effective or clinically appro-
priate in a specific case. It only acknowledges that they are clinically equivalent or not, and
in the latter case, a dosimetrist needs to make a choice. It is essential to account for all
relevant factors when evaluating the efficacy of a treatment dose to ensure a comprehensive
understanding.

Overall, the proposed dose comparison technique presents a promising tool for radiation
dose evaluation. While it has certain limitations, it can serve as a valuable addition to the
repertoire of methods employed by radiation oncologists and medical physicists for optimiz-
ing treatment plans and improving patient outcomes. Complementing existing techniques
offers an additional layer of analysis, contributing to more informed decision-making in
clinical practice.

Stop Criterion Defining an adequate stopping criterion for the fluence map optimiza-
tion process is a critical challenge in radiotherapy dose optimization. In clinical practice,
dosimetrists often guide optimization, who may terminate the process when they are sat-
isfied with the outcome. However, the need for fully automated optimization processes re-
quires the establishment of systematic and objective stopping criteria. One potential ap-
proach is to compare the clinical effects of two dose distributions and stop when one opti-
mization step does not change the clinical effect. This method can helps evaluate different
solutions and determine the optimal point to terminate the optimization process.

4.2 Network of Doses
In this section, we aim to construct a clinically meaningful network of dose distributions,
where each node represents a distinct dose distribution, and the edges quantify the rela-
tionships between them. By creating such a network, we can identify clusters of similar
dose distributions and uncover patterns that reflect clinical relevance. This network-based
approach will enable us to visualize better, analyze, and interpret the relationships between
various treatment plans, ultimately improving the comparison and optimization of radio-
therapy strategies.

Numerous efforts have been made to automate the treatment optimization process in radia-
tion therapy. One promising avenue is the exploration of the Pareto frontier, as discussed in
[64] and [94], which seeks to identify a set of treatment plans that balance conflicting objec-
tives, such as maximizing tumor control while minimizing damage to surrounding healthy
tissue. Another approach proposed [25] consists of directly extracting leaf movements from
patient data to enhance the automation of dose delivery.

Despite these advancements, fully automated approaches have yet to be widely adopted in
clinical practice, primarily due to practical limitations and the complexity of translating
these methods into routine use. Using doses network analysis, we will propose a hybrid ap-
proach that integrates both manual and automated treatment optimization. This method
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will combine the computational efficiency of automation with the expert judgment of clini-
cians, ensuring that the final treatment plans are both optimal and clinically relevant.

4.2.1 Methods
Multiple Plans Generation We employed the same dose optimization process as previ-
ously described. The cost function utilized in this study is designed to be convex, ensuring
that, irrespective of the specific weight assignments given to the objectives, minimizing this
cost function will consistently converge to an optimal radiotherapy plan. To generate a di-
verse set of treatment doses for a given patient case and set of constraints, we optimized the
cost function with varying weight assignments for each constraint.

This approach mirrors the current practice in which dosimetrists adjust the weights as-
sociated with different dose objectives to guide the optimization engine toward a clinically
acceptable solution. By altering these weights, it becomes possible to explore different
trade-offs and prioritize certain aspects of the treatment plan, such as sparing healthy
tissue or enhancing tumor coverage, according to the patient’s specific clinical needs.

Objectives’ Weights Generation The weights assigned to each optimization objective
dictate the relative importance of each objective in the trade-offs made by the optimization
engine. Initially, we begin with a typical weight assignment used in clinical practice. To
generate a diverse set of weights, we perturb these initial values by adding random normal
noise, resulting in a unique new set of weights.

By repeating this process, we can explore a wide range of potential treatment plans. This
thorough exploration provides a nuanced understanding of the trade-offs between com-
peting clinical objectives. The random computational exploration of irradiation strategies
extends beyond the capabilities of manual exploration, enabling clinicians to make more
informed and tailored decisions based on a broader array of treatment possibilities.

Dose Normalization For consistency across cases, we normalized the doses using the
"D50%" normalization method, a common practice in radiation therapy. This method nor-
malizes the dose such that the median dose delivered to the PTV equals the prescribed dose,
ensuring comparability across treatment plans.

Phantom Patient Our proposed method for clustering radiation doses was evaluated
using the TG-119 Prostate case [85], a well-established benchmark dataset commonly em-
ployed to assess the quality of radiation therapy plans. The TG-119 dataset provides pre-
defined dose objectives, which were incorporated into the formulation of our cost function.
This benchmark allows for a robust evaluation of our clustering approach in the context of
clinically relevant treatment goals, ensuring that the method aligns with widely accepted
standards in radiation therapy planning.



68 CHAPTER 4. DOSES RELATIONSHIP

Dose Clustering Techniques

Dose Distance We first needed to establish a method for defining the distance between
individual doses to perform the dose clustering. We employed the Euclidean distance be-
tween voxel-wise dose distributions as our distance metric. The weight of each edge between
two doses was then defined as the inverse of this distance as we sought to maximize the
edge weights between similar doses. Defining edge weights as the inverse of the distance
between nodes is a common practice in graph theory, as noted in previous works [78] [70].

Community Detection We employed Louvain’s method for community detection to clus-
ter the radiation doses. Louvain’s method is a greedy optimization algorithm that aims to
maximize the modularity of the graph. Modularity is a metric used to assess the quality
of a graph partition by quantifying how well the graph is divided into distinct communi-
ties. For our analysis, we utilized the implementation of Louvain’s method available in the
Python library NetworkX [43], which facilitated partitioning the dose similarity graph into
meaningful clusters.

Evaluating Communities Split The clustering quality was evaluated using DVHs de-
rived from the different doses. We computed the mean and standard deviation of the DVHs
curves for each cluster and the entire dataset.

We analyzed the relative volume doses across four distinct anatomical structures. One hun-
dred one dose values were sampled for each structure, corresponding to volume percentages
ranging from 0% to 100% in equal 1% intervals. These values were aggregated into a single
vector, resulting in a vector of length 404 for each dose.

To assess the variability within these dose vectors, we calculated the standard deviation for
each of the 404 elements in the vector. This measure provides insight into the dispersion
of dose values within the structures. By averaging the calculated standard deviations, we
derived a scalar metric that quantifies the degree of separation among the clustered doses,
reflecting the consistency or variability of the doses within each group.

4.2.2 Results
Visual Clustering Evaluation

Graph Plots In figure 4.5, each node represents a dose. The communities are attributed
using Louvain method and are identified by colors. Since the graph is clearly not planar,
we choose to plot it in a circular layout (fig. 4.5a) and in a spring layout (fig. 4.5b).

In order to obtain a more precise understanding of the edge weights in the network, one can
refer to the adjacency matrix of the edge weights, as depicted in Figure 4.6.
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(a) Circular Layout. (b) Spring Layout.

Figure 4.5: Plot of the Network
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Figure 4.7: Dose-Volume Histogram

DVH Plot Figure 4.7 illustrates the DVHs, with the colors of the plots corresponding to
the communities identified in the network analysis. To ensure clarity and prevent confu-
sion, each structure is presented on a separate plot. Notably, our observations align with
expectations, as doses assigned to nodes within the same community (indicated by the same
color) exhibit nearly overlapping DVHs.

The visualization of DVHs offers critical insights into the distribution of radiation doses
across different anatomical structures. The strong alignment between observed dose pat-
terns and community assignments highlights the potential of network analysis to reveal
significant patterns within radiation therapy data. By mapping the colors of the DVH plots
to the communities identified in the network, we gain a deeper understanding of the rela-
tionship between dose assignments and structural characteristics.

This analysis supports the hypothesis that nodes (representing doses) within the same com-
munity exhibit similar dose profiles. As a result, these doses could be consolidated, given
that they are likely to have comparable clinical outcomes. This method provides an efficient
approach to identifying groups of treatment plans that share equivalent therapeutic effects,
enabling a more streamlined decision-making process.
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Set Set Size Mean Standard Deviation
Cluster 1 (blue) 5 7.30
Cluster 2 (orange) 8 4.51
Cluster 3 (green) 2 0.95
Cluster 4 (red) 5 2.17
Cluster 5 (purple) 10 7.92
All 19 15.54

Table 4.1: Clustering Quality

Numerical Clustering Evaluation As explained in subsection 4.2.1, we use the mean
standard deviation of doses at 101 equispaced values of volume to obtain a scalar value of
how far apart are a set of doses; see table 4.1 for results.

The mean standard deviation values for the clusters — 7.30, 4.51, 0.95, 2.17, and 7.92,
with an average of 4.57 — are significantly lower (nearly four times) than the mean, standard
deviation of the entire network, which is 15.54 (see Table 4.1). This substantial reduction
in standard deviation provides clear quantitative evidence that our clustering method yields
favorable results.

This quantitative improvement is further corroborated by qualitative insights, as shown
in Figure 4.7, where the dose clusters effectively characterize the distribution of radiation
doses. The strong alignment between the dose clusters and the DVH patterns reinforces
the validity and relevance of our clustering strategy. Our proposed clustering approach
performs well in qualitative and quantitative evaluations, underscoring its potential utility
in optimizing radiation therapy plans.

4.2.3 Discussion
This study presents a novel approach to clustering doses based on their distributions, pro-
viding both quantitative and qualitative evidence of the significance of such clustering. How-
ever, clustering doses remains a complex task due to the high dimensionality of dose space
and the irregularities in dose distributions. While the results presented in this study are
promising, they are not yet ready for clinical implementation. The results suggest that doses
within the same cluster likely have indistinguishable clinical effects, which opens up several
practical applications.

Regrouping doses into clusters offers valuable insights into clinical practices and introduces
new possibilities for optimizing radiotherapy treatment plans. One potential application of
dose clustering is to use the identified clusters as a similarity measure for early stopping
in optimization processes, leading to potential time savings and computational efficiency.
Specifically, if the dose distribution shows convergence with the previous n dose distri-
butions, this could serve as an indication to halt further optimization, thereby improving
efficiency.
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Moreover, expanding this clustering approach to include doses from multiple patients could
provide insight into the treatment practices of different clinical centers, facilitating compar-
isons of outcomes for similar anatomies.

In the following section, we propose a clinical application of the dose clustering technique
that can potentially streamline the optimization process for dosimetrists. This approach
could significantly reduce the number of manual interactions, or "clicks," required within
the Treatment Planning System, thereby enabling faster and more efficient dose optimiza-
tion.

4.3 A Novel Framework for Multi-Objective Optimiza-
tion and Robust Plan Selection Using Graph The-
ory5

4.3.1 Challenges in Current Practices
In recent years, the complexity of treatment planning in radiotherapy has increased sub-
stantially, with planners having to balance multiple objectives, such as maximizing tumor
control while minimizing damage to surrounding healthy tissue. Despite advances in ra-
diotherapy planning, current practices still face limitations. Traditional approaches often
rely on manual fine-tuning of parameters, making it difficult to achieve a globally optimal
solution. Multi-objective optimization balances competing goals and is a manual, time-
consuming process. Planners must evaluate and adjust multiple treatment plans to ac-
count for uncertainties and variations in patient anatomy. This approach is labor-intensive
and prone to inconsistencies due to human factors, which can lead to suboptimal patient
outcomes. We present a novel framework for multi-objective optimization and robust treat-
ment plan selection based on graph theory to address these challenges. This framework
introduces significant automation into the planning process, allowing for more efficient and
reliable plan generation.

4.3.2 Proposed Framework
The first step in the framework is the construction of the graph, which is based on the
systematic random perturbation of importance factors assigned to clinical constraints. By
treating this set of plans as a graph, we can explore the landscape of possible solutions
more systematically. It would not be practical to ask doctors and dosimetrists to evaluate
dozens of treatment plans.

We use clustering algorithm described in the previous section to regroup doses with similar
effects. Clusters of plans, or "communities," emerge based on their proximity in the graph,

5Presented at ESTRO 2024.
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Figure 4.8: Graphical Abstract of the Proposed Process.

allowing us to narrow down the set of candidates for more detailed evaluation. By focusing
on these robust communities, we reduce the need for manual intervention in plan selection.
Instead of planners having to sift through dozens of plans, the framework automatically
highlights the most promising options, significantly reducing both time and effort (see figure
4.8).

This framework represents a shift from the traditional "many-clicks" approach—where plan-
ners must manually adjust and evaluate numerous treatment plans—to a "few-clicks" work-
flow, where the system presents only the most relevant, robust plans for final review. This
automation not only saves time but also reduces the risk of human error, leading to more
consistent, higher-quality outcomes for patients.

4.3.3 Discussion
The proposed framework transitions from a traditional N-click approach6 to a more efficient
n-click solution7. While this shift significantly reduces the time required for plan selec-
tion, it still requires dosimetrists and doctors to adapt to a new workflow. This change in
habit—moving from manually reviewing and adjusting plans to relying on semi-automated
plan suggestions—may pose a barrier to clinical implementation.

For a solution to be adopted in everyday practice, it must minimize the disruption to current
workflows. Ideally, this means evolving the framework into a proper 1-click solution, where
the system autonomously generates and selects the optimal, robust treatment plan without
requiring manual intervention. Such a system would eliminate the need for dosimetrists
and doctors to alter their habits and ensure consistent, high-quality outcomes with mini-
mal effort. Achieving this level of automation is essential for widespread clinical adoption.
Therefore, future work in this manuscript will focus on refining the framework to meet these
demands, bringing it closer to a fully automated, practical tool for radiotherapy planning.

6with N >> 10
7with 10 > n > 1





Classical Dosimetry Automation

Abstract

In radiation therapy, treatment planning involves balancing competing objectives. The
contradictory goals often lack universal prioritization. Expert bias introduces variability
in clinical practice, as the preferences of radiation oncologists and medical physicists
shape treatment planning. Traditionally, this balance is achieved through manual or
semi-manual processes guided by the expertise of clinicians and planners. This chapter
explores approaches for fully automating the treatment planning process, focusing on
classical optimization techniques constrained by dosimetric objectives.

We will review established methods and propose new agents capable of optimizing dose
without human interaction. This innovative approach leverages previously defined dose
distance metrics. We aim to streamline and standardize the treatment planning work-
flow by fully automating the optimization process.
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5.1 Meta Optimization Approach
After the FMO step is developed and encapsulated, one may modify the weights used for the
FMO iteratively until a condition is met or for a given number of steps. We will, therefore,
have one inner optimization (the FMO) and one outer optimization.

Algorithm 1 Meta Optimization Algorithm
Outline

initialize w
repeat

initialize b ▷ FMO starts
repeat

d = Lb ▷ differentiable
c = C(w,d) ▷ differentiable
back-propagate c
update b

until FMO stop condition ▷ FMO ends
update w

until Meta-optimization stop condition

The outer optimization step is not differentiable (or at least not in a reasonable computation
time). Hence, we will be looking at gradient-free optimization methods.

5.1.1 Expert Weight Adjustment
Expert systems are computer systems emulating the decision-making of a human expert.

Simple Weight Increase One approach involves increasing the weight of all unsatis-
fied constraints after each FMO optimization step. This method is advantageous due to its
simplicity in terms of implementation and understanding. However, a significant limitation
arises when none of the constraints are met, causing the outer optimization loop to stag-
nate. In such cases, the optimization process remains stationary, usually when too many
constraints are enforced. This stationary state arises particularly in complex scenarios with
multiple competing constraints and can result in a situation where progress is hindered,
preventing the solution from improving over iterations.

Inverse Proportional Weight Increase Another approach involves increasing the weight
of each constraint inversely proportional to how close it is to being met, thereby quantifying
the degree of constraint satisfaction. For instance, the degree of satisfaction can be quan-
tified by calculating the area between the dose-volume histogram (DVH) constraint and the
actual DVH curve; when this area is zero, the constraint is considered fully satisfied.
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While this method remains relatively straightforward to implement and provides a more
refined adjustment of weights based on how close each constraint is to being met, it can lead
to oscillation issues. Constraints may fluctuate between being satisfied and violated across
iterations, hindering stable convergence. Although adding momentum to the optimization
process could mitigate these oscillations, expert systems of this nature typically require
continuous tuning and refinement. As a result, this approach may not be viable for reliable
clinical applications where consistent performance is essential.

5.1.2 Metric-Based
Here, we suppose that one can construct a measure of the quality of a plan.

Hill Climbing Hill climbing [120] is a simple optimization technique in which the solution
iteratively moves toward an improved solution based on a defined metric. In the context of
radiotherapy treatment planning, several metrics have been proposed to quantify the qual-
ity of a plan, including Normal Tissue Complication Probabilities (NTCP), target coverage,
conformity index, and heterogeneity index, among others [75, 69] . This approach offers a
systematic way to improve treatment plans by optimizing the chosen metric.

However, defining the correct metric of interest is challenging, as no single metric, nor a
combination of metrics, has consistently proven to satisfy radio-oncologists’ requirements.
In practice, the most reliable method for assessing the quality of a treatment plan remains
the manual evaluation of DVHs, which provide a detailed representation of the dose distri-
bution across both the target and the surrounding organs at risk.

Pareto Exploration Researchers have developed algorithms to explore the Pareto sur-
face of dose distributions, yet no consensus has been reached on selecting an optimal dose
from this surface. Consequently, Pareto surface exploration is unsuitable due to the ab-
sence of an objective quantitative measure for evaluating the quality of a specific plan [53].
This limitation similarly constrains other meta-optimization techniques, as they also rely
on the availability of a clear, impartial criterion for plan evaluation [139, 142].

Contextual Knowledge Another challenge is the varying difficulty across patients due
to their different organ geometry. In "easy" cases, clinicians may require a highly opti-
mized dose distribution regarding the previously mentioned metrics. On the other hand,
for "harder" cases, they can afford to be more lenient regarding constraint satisfaction.

This context-aware acceptability criterion adds complexity to the optimization process. It
becomes challenging to define general rules not only for ranking treatment plans but also
for deciding a plan’s acceptability.
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5.2 Radiotherapy Dose Optimization via Clinical Knowl-
edge Based Reinforcement Learning1

5.2.1 Introduction
Reinforcement learning (RL) is a machine learning paradigm that trains agents to make
sequential decisions in dynamic environments [15]. Agents learn to optimize their actions
to achieve long-term objectives through trial and error guided by rewards or penalties. The
decisions taken by dosimetrists when optimizing treatment can be formalized as an RL
problem. Moreover, dosimetrists can guide the TPS towards an acceptable plan but usually
can not explain their decision while interacting with the TPS. The difficulty in explaining
why certain decisions are taken suggests using deep RL over expert-based methods. This
setup is similar to image recognition, where one can say a picture represents a car or a boat
but struggles to explain why.

The study’s primary hypothesis is that all the information needed to decide how to change
the weights in the objective function relies on the DVHs. The fact that dosimetrists almost
solely use DVH plots supports our hypothesis. In order to learn the actions of dosimetrists
who use a TPS to optimize doses, we leverage deep learning. We train an agent that takes
the DVHs as the input of the current optimized dose and predicts the evaluation of possible
weight changes.

Access to the exact actions taken by human dosimetrists on the TPS is typically unavailable
(as clinics do not usually store this data; only the final plan is held). Therefore, we only
use the dose distributions of previously treated patients to train our model. This partial
availability of data suggests the use of RL.

Reinforcement Learning Paradigm RL agents adapt actions to situations where there
are interactions with an environment [57]. In order to learn, RL agents only need a reward
(scalar value) after performing an action.

In classical RL, we want V (St) = Rt + γV (St+1). (so the update is V (St) ← (1 − α)V (St) +

α [Rt+1 + γV (St+1)]). In the context of dose optimization, the reward Rt is defined as Rt =

E(St+1)− E(St), where E is a function that evaluates the quality of a state (such that higher
is better; if lower is better, then swap st and St+1).

The evaluation E can be one or a mixture of the metrics mentioned in the introduction
(Section 5.1.2) [117] [118] [84]. This setup may leverage knowledge about which actions to
perform instead of guessing randomly, as a meta-optimizer would do. Hence, the RL could
gain some computation time compared to a meta-optimization.

However, this technique does not use past plans; it only needs the optimizer inputs (CT,
structures contours). We propose using the availability of past treatment plans to more

1Presented at AIME 2024.
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Figure 5.1: Classical reinforcement learning reward for
automatic dosimetry.

accurately reflect the complexity of decisions made by dosimetrists and better match their
expectations of a fully automatic treatment planning system.

5.2.2 Methods
We present a novel paradigm for reward-based RL agents in dosimetry. This revised reward
framework better reproduces human-optimized dose distributions.

Reinforcement Learning Reward As developed in previous work, we can derive a dis-
tance between dose plans [95]. If we consider the clinical dose of past cases (used for
training) as the best achievable one, we can evaluate a dose plan by computing its distance
from the clinical dose plan.

Let Dt be the dose associated with St, and DC the clinical dose. We then define E(St) =

D(Dt, DC). Since, in that case, E(St) should be minimized, we will define the reward as

Rt = E(St)− E(St+1) = D(Dt, DC)−D(Dt+1, DC).

This reward can be interpreted as the "distance gained to the clinical dose".

Architecture We use a dense neural network, which inputs the DVHs and current nor-
malized weight values. It outputs the Q(s, a) value for each possible action a. Dense layers
are very prone to overfitting. In order to force the network to actually predict the follow-
ing evaluation for each possible action, without overfitting, we incorporated a bottleneck in
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Figure 5.2: Deep neural network used for the RL agent.

the network (Figure 5.2a). Compressing the information stops the network from overfitting.
Networks with such architecture show very little difference between training and validation
sets (see Figure 5.2b).

Avoiding Off-Distribution We generated a training set of over 125k actions (this took
five days on an NVIDIA GeForce GTX 1080). Despite this relatively large dataset, we have not
explored exhaustively the state-actions space, and the network still lands off-distribution.
This can easily be spotted when the predicted Q value is greater than the current distance to
the clinical dose; we choose to ignore those predictions, and in fact all outlier predictions.
The justification is that our set of actions is limited, no action will suddenly drastically
improve the plan. It is the combination of several sequential actions that allows good plan
optimization. Therefore, while testing, we choose the action with the best prediction, while
passing the outlier test just mentioned.

Data We generated synthetic phantom patients and corresponding clinically relevant dose
distributions. Variability can arise in clinical practice due to differences in organ contouring
methods (manual or automated) and the potential for clinics to delineate different organs. To
mitigate this variability in our ongoing research, we employed synthetic patients, ensuring a
standardized approach where all patients possess the same number of organs with similar
shapes and identical prescription parameters. Future studies will explore the application
of this methodology to actual clinical cases.
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Constraint type Structure Volume Dose
Minimum PTV 95% 78.0Gy
Maximum PTV 5% 82.0Gy
Maximum Organ 1 28.4% 21.8Gy
Maximum Organ 2 33.7% 23.7Gy
Maximum Organ 3 24.1% 26.9Gy
Maximum Organ 4 37.6% 27.9Gy
Maximum Organ 5 20.5% 30.8Gy

Table 5.1: DVH constraints used to create the cost function
used in the FMO.

Synthetic patients We generated a cohort of 130 patients with bodies modeled as oval
axial cross-sections, assigning a uniform density equivalent to water. Within each body, we
placed an ellipsoidal planning target volume (PTV) with a slightly different density, sampled
from N (1, 0.05). Five organs at risk (OARs) were also positioned around the PTV, aligned
along the axial plane. The exact position and size of organs and PTV were randomized to
consider the geometric variability across individuals. This setup was designed to simulate
cases analogous to typical prostate cancer scenarios.

Synthetic clinical dose After generating the patient’s CT and structures, we needed
to create a reference dose that our agent should mimic. We manually set weights and
performed a standard optimization. The dose prescription is a standard 80Gy on PTV, the
same across all patients. The table of the clinical DVH constraints used for optimization are
detailed in table 5.1 We used a seven-beam IMRT irradiation technique on all the cohorts.

5.2.3 Results
Figure 5.4 shows how the distance between our RL agents performs over five steps on 30
test patients (unseen during the training). A lower distance is interpreted as an improved
dose, since it is closer to the best dose, which is the clinical one.

Quantitative Results The network converged on the training data, and validation showed
minor overfitting. For testing, we generated 30 brand new cases that we again manually op-
timized. We then used the RL model to perform the optimization of these 30 unseen cases.
On average, our model was able to reduce the dose distance with manually optimized dose
by a factor of 3 (from 1.8 at iteration 0 to 0.6 at iteration 4), as shown in Table 5.2.

We remark from the Table 5.2 that the homogeneity score and conformity score give similar
results. Classical meta-optimization performs well, but needs a metric to elect the best
dose (during the test, the clinical dose is unknown, so the DVHs distance metric is not
available). We also observe that clinical doses are not always scoring high (in this test set,
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Agent \ Metric Mean Final
Distance∗

Homogeneity
Score†

Conformity
Score†

RL Distance Score 0.612 1.871 0.406
RL Homogeneity Score 2.012 4.387 0.567
RL Conformity Score 1.770 4.017 0.507

Meta-optimization N/A 4.117 0.610
Clinical doses 0 1.541 0.580

∗ distance is imporved performance through a lower score.
† score is imporved performance through a higher score.

Table 5.2: Average performances of four algorithms tested on
DVHs distance to clinical dose, dose homogeneity-based score,

and conformity-based score.

a high conformity, but low homogeneity compared to automatic techniques). This show the
difficulty to create a metric that capture all the complexity of a clinically acceptable dose.

Qualitative Results Figure 5.5 shows the DVHs at each of the first four optimization
steps on one of the test patients, unseen by the agent during the training. Our model
drastically reduced the dose distance with manually optimized doses. Visual inspection of
the DVHs plot shows that the dose optimized by the RL agent is very close to the clinical
(manually fine-tuned) one.

5.2.4 Discussion and Conclusion
Our study demonstrates the potential of deep RL for automating radiotherapy treatment
plan optimization. A key strength of our approach is its ability to learn from past treatment
plans, capturing the complex decision-making processes of human dosimetrists. This data-
driven approach avoids the limitations of pre-defined metrics, which may not fully capture
the nuances of optimal treatment planning.

However, our study also has limitations. The agent’s performance relies on the quality and
quantity of available training data. Cases with limited historical data or complex anatomi-
cal features may require additional strategies. Moreover, while the agent achieves promis-
ing results regarding dose distance reduction, the dose is not guaranteed to be clinically
acceptable. Although this study demonstrates the promise of our RL approach in a con-
trolled setting, one final limitation to mention is that extending it to real-world radiotherapy
planning would necessitates addressing additional complexities and constraints.

Several avenues exist for further research. Firstly, we plan to investigate strategies for incor-
porating additional information, such as patient characteristics and anatomical complexi-
ties, into the training process. For example, a potential improvement to the current model
involves the integration of 3D dose distributions as input. This additional information would
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allow the RL agent to identify dose hotspots within the treatment volume better. This spatial
representation of dose delivery would enable the agent to more accurately assess areas of
over- or under-dosage, leading to more informed decision-making during plan optimization.
Ultimately, the agent is expected to improve the clinical acceptability of the generated treat-
ment plans by using a more comprehensive understanding of the dose landscape and its
implications for treatment outcomes.

Secondly, we aim to explore techniques for improving the interpretability of the RL agent’s
decision-making process. Interpretability is essential for building trust in the system and
facilitating its clinical adoption. By developing techniques that allow dosimetrists and clin-
icians to understand the rationale behind the agent’s actions, we can ensure that its de-
cisions align with clinical expertise and best practices. This transparency will support the
validation of the agent’s performance and provide insights into potential areas for refinement
and further optimization.

Our approach differs from previous RL-based methods for radiotherapy planning in two
key aspects. First, we avoid relying on pre-defined metrics for evaluation, which can be
subjective, and limit the agent’s ability to learn complex optimization strategies. Second,
compared to traditional meta-optimization approaches, our method leverages past treatment
data, potentially leading to more informed decision-making during the optimization process.

This study demonstrates deep RL’s feasibility and potential benefits for automating radio-
therapy treatment plan optimization. Our approach is capable of directly predicts state
evaluations, and shows promise in achieving significant improvements in efficiency and,
potentially, treatment outcomes. Further research is needed to address limitations, improve
interpretability, and ensure safe clinical integration. This approach could revolutionize ra-
diotherapy planning, leading to more standardized, efficient, and improved patient care.

5.3 Clinically Dependent Fully Automatic Treatment
Planning System2

In the previous section, we propose a novel approach using RL agents trained to mimic hu-
man optimization based on historical dose distributions from past treatments. This section
will show that the RL agent developed above method allows for clinic-specific optimization.
The RL agent adapts to various clinical practices without requiring additional information
beyond the clinic’s historical dose data. By tailoring the RL agent’s training to the specific
dose patterns previously delivered by a clinic, the agent can learn to replicate the clinic’s
internal standards and guidelines. This approach enables the deployment of a standard-
ized training algorithm across multiple institutions while providing each institution with a
personalized model. This system could pave the way for broader adoption of fully automatic
TPS in routine clinical settings.

2Presented at ASTRO 2024.
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5.3.1 Introduction
One area that remains challenging is the complete automation of treatment planning. Cur-
rent TPS technologies offer either manual treatment planning or a single automatic plan-
ning. They fail to consider the wide variation in practices across clinics [63], which often
leads to sub-optimal treatment plans according to one clinic-specific guideline. Manual
planning by dosimetrists remains how most treatment plans are calculated.

There is significant interest in developing a fully automatic TPS that can mimic human
decision-making processes while remaining adaptable to different clinics’ specific practices.
Reinforcement learning has emerged as a promising approach in automated planning be-
cause of its ability to adapt to complex environments and learn from interactions with them.
In radiotherapy, RL can theoretically adjust the weight of constraints in optimization to
achieve clinically acceptable plans. However, current RL systems have struggled to repli-
cate the clinical guideline adaptability of human dosimetrists.

In this section, we propose a solution that leverages the clinic’s past treatment data to
train RL agents that can optimize treatment plans according to local clinical guidelines. By
training one agent per clinic, the system ensures that the RL agents adhere to each clinic’s
specific standards, potentially making automated TPS more clinically viable. We hypothesize
that our clinic-specific RL agents can optimize radiotherapy plans while adhering to the
respective institutional standards.

5.3.2 Methods
Training Data We created three clinical doses for each patient, each following a specific
guideline. In order to reduce computation time (as this time, we had three different clinics
for each patient), we generated a cohort of 50 virtual patients for training and another 20
for testing. Each case was manually optimized to serve as a reference for the RL agent.

Reinforcement Learning Framework We use the same RL framework described in
section 5.2.2, where the reward function was designed to penalize deviations from the ref-
erence dose distribution by comparing the RL-generated DVHs with those of the training
cases. The closer the agent’s plan was to the reference, the higher the reward received. This
approach differs from traditional RL reward systems that often struggle to provide mean-
ingful feedback in complex medical scenarios like dosimetry, where the “goodness” of a plan
is difficult to quantify with a single metric. Most importantly, this approach allows the op-
timization to fit each center’s internal standard practices and guidelines. We created three
RL agents, each mimicking the treatment plans of a specific clinic.

5.3.3 Results
Qualitative Evaluation Figure 5.6 summarizes the evolution of the average distance
between the reinforcement learning agent’s dose and the dose from clinics A, B, and C
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(a) RL agent trained to
replicate doses from clinic A.

(b) RL agent trained to
replicate doses from clinic B.

(c) RL agent trained to
replicate doses from clinic C.

Figure 5.6: Distance between the reinforcement learning
agent’s dose and the dose from clinics A, B, and C throughout

iterations.

RL Agent trained on Distance
to clinic A

Distance
to clinic B

Distance
to clinic C

Doses from clinic A 1.6 2.2 5.1
Doses from clinic B 2.3 1.3 2.3
Doses from clinic C 2.7 2.5 1.6

Table 5.3: Average distance of each RL agent on each clinical
dose on the test set.

throughout iterations of importance wights changes. Each one of the three agents was
trained on the dose data of one specific clinic. Throughout iterations, RL agent were able
to gradually reduce the distance with the dose they were trained to replicate.

Quantitative Evaluation The table 5.3 summarizes the average DVH differences be-
tween the RL-generated plans and the reference clinical plans across the test set. We ob-
serve a lower average distance on the diagonal, showing that RL agents trained on specific
clinical guidelines successfully mimic the dose type of specific clinics. However, RL agents
performed poorly according to other clinics’ guidelines.

Mimicking Clinical Guidelines Our results demonstrate that RL agents trained on
clinic-specific data can successfully mimic the dose distributions generated by human
dosimetrists. Agents trained to optimize according to one clinic’s guidelines produced plans
that closely matched the previous plans from that clinic. However, agents trained under a
specific set of guidelines did not perform well when tested on patients from different clin-
ical guidelines. This finding highlights the importance of tailoring RL agents to individual
clinic practices. A general-purpose RL agent trained on mixed clinical data would struggle
to produce acceptable plans for any clinic, confirming our hypothesis that RL agents must
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be clinic-specific to achieve clinically useful results.

5.3.4 Conclusion
The findings of this study suggest that fully automated TPS systems tailored to individual
clinics are feasible. We could replicate the human dosimetrists’ decision-making process
by training RL agents on a cohort of patients treated under a specific set of guidelines.
The main advantage of this approach is that it allows each clinic to maintain its internal
standards and practices rather than adopting a generic automated planning system that
may not suit its unique requirements.

However, there are still limitations to the approach. One fundamental limitation is that RL
agents trained on one clinical guideline cannot generalize across different practices. This
limitation suggests that each clinic must invest resources into training its own RL models.
Additionally, our work so far has focused on phantom cases, and future research is needed
to assess the applicability of this method to non-phantom patients.

This study and the one in the previous section have demonstrated the potential for a clin-
ically dependent, fully automatic TPS using RL. We trained RL agents to mimic human
optimization by leveraging historical clinical data. This system can adhere to clinic-specific
guidelines without requiring physicians to explicitly define them, a task that is often chal-
lenging and imprecise. Instead, the system leverages historical treatment data to learn and
implicitly replicate the clinical preferences and decision-making processes. This implicit
learning reduces the burden on clinicians to formalize their optimization strategies. This
idea makes automated treatment planning more likely to be adopted. Future work will in-
volve expanding the cohort to non-phantom patients and conducting testing with human
oversight to ensure the safety and efficacy of the system.



Dosimetry Automation via Dose
Mimicking

Abstract

The previous chapter discussed automation techniques that enhance classical treat-
ment plan optimization methods. This chapter focuses on novel automation techniques
for radiotherapy treatment planning that bypass traditional optimization frameworks.
With the advent of deep learning, dose prediction models have emerged, offering an al-
ternative approach to generating treatment plans. These models predict synthetic 3D
dose distributions, which can be used in dose mimicking to create clinically deliverable
treatment plans. In this chapter, we explore advancements in dose prediction tech-
niques, explicitly focusing on methods that improve the accuracy and adaptability of
these predictions. By incorporating additional information, such as Dose-Volume His-
tograms, we propose methods to make dose prediction models more clinically relevant
and capable of generating treatment plans that align with varying prescription protocols
and dosimetrist preferences.
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6.1 Dose-Volume Histograms Guided Deep Dose Pre-
diction for Radiotherapy Treatment Planning1

6.1.1 Introduction
Traditionally, the creation of radiotherapy treatment plans has been a semi-manual process,
where dosimetrists finetune importance factors assigned to structures and constraints. A
cost function is then used through a classical optimization algorithm to calculate the opti-
mal plan.

In recent years, deep learning in treatment planning has gained attention. Deep learn-
ing models can predict the three-dimensional dose distribution based on patient-specific
anatomical data derived from medical imaging (CT scans). While the predicted dose distri-
bution may not directly be used as a deliverable treatment plan, it serves as the basis for
determining a clinically viable plan through dose mimicking. Dose mimicking is an opti-
mization technique that eliminates the need for manual adjustment of importance factors
by dosimetrists. Therefore, the ability to predict a clinically acceptable and near-deliverable
3D dose distribution for any patient presents significant potential for fully automating the
radiotherapy planning process. It is important to note that the successful application of
dose mimicking [81, 126] requires a target dose distribution that is nearly deliverable; thus,
arbitrarily setting the target dose to zero for OARs is not feasible.

However, this approach requires further adaptation to accommodate specific clinical guide-
lines. A potential solution involves training individualized models for each treatment cen-
ter, allowing institution-specific practices and guidelines to be incorporated. However, deep
learning dose prediction models are computationally large, and implementing separate mod-
els for each center is resource-intensive. Furthermore, such models require substantial
datasets for effective training. Consequently, smaller treatment centers may lack the nec-
essary data volume to train a comprehensive model adequately. Additionally, a separate
model may be required for each prescription type due to the variability in prescription doses,
making manual treatment planning necessary for non-standard cases. Finally, clinicians
and dosimetrists may prefer manually adjusting treatment plans in some cases. Such ad-
justments are not feasible within the current model framework.

We propose a novel approach that incorporates target DVHs directly into the input of the
deep learning-based dose prediction model. Incorporating DVHs introduces interactivity
into the model, allowing adjustments to the target DVH to yield corresponding changes
in dose predictions. This methodology enables a workflow where dosimetrists can refine
the predicted dose distribution according to specific clinical objectives. Furthermore, by
establishing a template target DVH tailored to each clinic, the same model can be deployed
across multiple centers while generating 3D dose predictions that align with the specific
practices of each institution.

1Presented at SFPM 2024.
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Related work Previous studies have explored the application of deep learning to DVH pre-
diction in radiotherapy planning. Chung et al., for example, developed a method to predict
patient-specific dose-volume histograms (DVHs) [21]. Ahmed et al. similarly investigated
the estimation of the best feasible DVHs for organs at risk [4]. In contrast, our research
adopts a reverse approach, utilizing target DVHs to predict clinically acceptable dose distri-
butions. To our knowledge, this innovative paradigm has not been previously explored in
the literature.

6.1.2 Material and Methods
Data size We defined a bounding box of dimensions 120× 180× 180 mm3 centered on the
PTV, with isotropic voxels of 5 × 5 × 5 mm3. This box size was chosen to accommodate the
PTV and the relevant OARs, namely the rectum and bladder, while maintaining a balance
between computational feasibility and model accuracy. A larger bounding box would have
increased model complexity and computational time without substantial benefit.

Dataset and Patient Cohort The dataset used for model training comprised 168 pa-
tients from the Institut régional du Cancer de Montpellier radiotherapy department. These
patients were selected based on their anatomical conformity to the 120 × 180 × 180 mm3

bounding box. These patients received either 62Gy or 78Gy prescribed doses to the PTV,
with OARs including the bladder and rectum. The dataset was split into training, validation,
and test subsets, with 80% used for training, 10% for validation, and 10% for testing.

Base Architecture The model architecture is based on a 3D U-net, a well-established
neural network architecture for volumetric data. The input to the network consisted of four
elements: the patient’s CT scan, the contour of the PTV, the rectum contour, and the bladder
contour. The model output was the predicted three-dimensional dose distribution. The
encoder part of the U-net consisted of four convolutional layers with residual connections to
improve gradient flow during training, while the decoder section included five convolutional
layers. Skip connections were implemented between the corresponding encoder and decoder
layers to preserve spatial information across the model.

Incorporation of DVHs Dose-volume histograms represent one-dimensional curves,
whereas the CT images, anatomical contours, and predicted dose distributions are inher-
ently three-dimensional data. We employed the Direct Affine Feature Transforms (DAFT)
technique to integrate these disparate data types within the neural network [101]. DAFT
dynamically scales latent feature maps within the network, enabling the combination of
imaging data with DVH information.

For this study, we incorporated the DVHs for the primary structures of interest: the PTV,
rectum, and bladder. Not all points along a DVH curve hold equal clinical significance.
Dosimetrists typically focus on regions at the beginning and end of the curve, where the
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volume approaches 0% or 100%. To better capture these critical areas, we employed a non-
uniform sampling strategy based on the Chebyshev distribution, which provides a higher
density of points near the curve’s extremities. The Chebyshev points, defined in the range
[−1, 1], were remapped to the interval [0, 1] for this purpose. Given their critical importance in
clinical decision-making, this sampling technique allows us to prioritize accurate sampling
at the curve’s extremities. The sampled points were subsequently processed by a two-layer
perceptron, responsible for predicting the scaling parameters, α and β, used by the DAFT
mechanism to modulate the feature maps.

Three models comparison We evaluated three model configurations with varying levels
of DVH incorporation, the architectures of which are described in figure 6.1.

The first model referred to as "C" or the classic model (figure 6.1a), consists of a standard
3D U-net architecture without any incorporation of DVH information. The second model
denoted as "B" or the bottleneck model (figure 6.1b), integrates target DVH data using the
DAFT technique, as described previously, at the bottleneck layer of the U-net. In the third
model, termed "A" or the all connections model (figure 6.1c), DVH information is incorporated
via the DAFT technique both at the bottleneck layer and across all skip connections between
the encoder and decoder of the U-net. During the model training process, the clinical DVHs
corresponding to the real delivered doses were used as target DVHs for the optimization.

6.1.3 Results
Our results indicate that incorporating DVH data improves dose prediction’s quantitative
and qualitative aspects.

Quantitative Performance We used the Mean Absolute Error (MAE) between the pre-
dicted and ground-truth dose distributions to evaluate model performance. The incorpo-
ration of dose-volume histogram data into the networks resulted in improved quantitative
performance. The MAE measured on the test dataset was 2.42Gy for model A, 2.58Gy for
model B, and 3.18Gy for model C.

Prescription Adaptation In addition to the quantitative improvements, a qualitative
analysis of the DVHs associated with the predicted dose distributions confirmed the benefit
of including DVH information. A key finding from our study was that models A and B could
adapt their deep dose predictions based on the prescribed dose, with model A showing a
slight advantage over model B regarding accuracy (see figure 6.2). The dataset comprised
patients with two distinct prescription doses: 62Gy and 78Gy to the PTV. Model C consis-
tently predicted dose distributions resembling a 65Gy prescription, demonstrating a lack
of adaptability to the varying prescription levels (see figure 6.2). In contrast, models A and
B displayed greater flexibility, successfully adjusting their dose predictions following the
prescribed doses for each patient. This adaptive behavior highlights the effectiveness of
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(a) Model C: No DVH data, classical U-net.

3
x
3

x
3

 C
o

n
v
, 

4
 ➔

 3
2

3
x
3

x
3

 C
o

n
v
, 

st
ri

d
e
 2

, 
3

2
 ➔

 6
4

3
x
3

x
3

 C
o

n
v
, 

st
ri

d
e
 2

, 
6

4
 ➔

 1
2

8

3
x
3

x
3

 C
o

n
v

T
, 

st
ri

d
e
 2

, 
1

2
8

 ➔
 6

4

3
x
3

x
3

 C
o

n
v

T
, 

st
ri

d
e
 2

, 
6

4
 ➔

 3
2

3
x
3

x
3

 C
o

n
v
, 

6
4

 ➔
 6

4

3
x
3

x
3

 C
o

n
v
, 

1
2

8
 ➔

 6
4

3
x
3

x
3

 C
o

n
v
, 

6
4

 ➔
 3

2

3
x
3

x
3

 C
o

n
v
, 

1
2

8
 ➔

 1
2

8

3
x
3

x
3

 C
o

n
v
, 

3
2

 ➔
 1

0 20 40 60 80 100
Dose [Gy]

0.0

0.2

0.4

0.6

0.8

1.0

V
o
lu

m
e
 [

%
]

PTV
Bladder
Rectum

DVH

α ·     + β

F
C

 3
0

0
 ➔

 2
0

0

2
0

0
 ➔

 1
2

8

DecoderEncoder

(b) Model B: DVH data using DAFT on the bottleneck of the U-net.

3
x
3

x
3

 C
o

n
v
, 

4
 ➔

 3
2

3
x
3

x
3

 C
o

n
v
, 

st
ri

d
e
 2

, 
3

2
 ➔

 6
4

3
x
3

x
3

 C
o

n
v
, 

st
ri

d
e
 2

, 
6

4
 ➔

 1
2

8

3
x
3

x
3

 C
o

n
v

T
, 

st
ri

d
e
 2

, 
1

2
8

 ➔
 6

4

3
x
3

x
3

 C
o

n
v

T
, 

st
ri

d
e
 2

, 
6

4
 ➔

 3
2

3
x
3

x
3

 C
o

n
v
, 

6
4

 ➔
 6

4

3
x
3

x
3

 C
o

n
v
, 

1
2

8
 ➔

 6
4

3
x
3

x
3

 C
o

n
v
, 

6
4

 ➔
 3

2

3
x
3

x
3

 C
o

n
v
, 

1
2

8
 ➔

 1
2

8

3
x
3

x
3

 C
o

n
v
, 

3
2

 ➔
 1

0 20 40 60 80 100
Dose [Gy]

0.0

0.2

0.4

0.6

0.8

1.0

V
o
lu

m
e
 [

%
]

PTV
Bladder
Rectum

DVH

α ·     + β

F
C

 3
0

0
 ➔

 2
0

0

2
0

0
 ➔

 1
2

8

DecoderEncoder

(c) Model A: DVH data using DAFT on all connections between the encoder and the
decoder part of the U-net.

Figure 6.1: Architecture diagram of models A, B and C.
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(Solid line is predicted dose DVH, dotted line is target dose DVH.)
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Figure 6.2: DVHs of the dose predicted by each model on two
test set patients.
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incorporating DVH information, allowing the models to tailor dose predictions to specific
prescription requirements.

Clinical Relevance The ability to adjust dose predictions based on DVH data demon-
strates a significant advantage of our approach. The prescription dose can vary in clinical
practice depending on the tumor type, stage, and patient characteristics. By incorporating
DVH data, our models provide a more flexible and personalized approach to dose predic-
tion, allowing the TPS to generate a plan that aligns with clinical objectives and dosimetrist
input.

6.1.4 Conclusions
Our study shows the importance of incorporating DVH information into deep learning-based
dose prediction models. In this study, the target DVH links the clinical objectives defined
by the dosimetrist and the predicted dose distribution. We create a system allowing center-
dependent adjustments by embedding this information into the model. This system also
allows interactive adjustment of the dose distribution when the proposed treatment plan is
close to clinically acceptable. The comparison of models A, B, and C highlights the advan-
tages of integrating DVH data in the network. The comparison also shows that integrating
the information once at the bottleneck is sufficient.

An additional advantage of the proposed method is the capacity to generate standardized
target DVH templates for treatment planning. While averaging 3D dose distributions across
multiple patients is not feasible, it is possible to compute average DVHs. These average
DVHs can be stratified by anatomical site, prescription dose, and clinical practice, providing
a target for dose prediction with no effort. Dosimetrists and doctors can further modify these
templates to meet specific clinical requirements in case of non-standard patients. Once an
optimal set of DVHs is established for a given center’s protocols, it can be reused for future
patients with only minor adjustments. Furthermore, sharing dose templates and treatment
protocols from leading centers will allow knowledge transfer and elevate the quality of care
in less-resourced hospitals. This framework could enhance the efficiency and consistency
of the treatment planning process.

Our proposed approach demonstrates the feasibility and benefits of incorporating DVH data
into deep learning-based dose prediction models for radiotherapy treatment planning. By
embedding DVH information, we improve dose prediction accuracy and allow for interactive
fine-tuning based on clinical objectives. This technique opens the door to a new workflow
where dosimetrists can design target DVHs, and the TPS generates the deliverable treatment
plan that best matches these targets. Further studies will explore the generalizability of
our model across different cancer types and radiotherapy modalities. Additionally, clinical
validation studies will be crucial to assess the real-world impact of our proposed method on
treatment outcomes and workflow efficiency.
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6.2 Attention Mechanism on Dose-Volume Histograms
for Deep Dose Predictions2

6.2.1 Introduction
This study builds on work from the previous section We explore using attention mech-
anisms to improve the incorporation of target Dose-Volume Histogram information into
deep-learning models for radiotherapy dose prediction. In traditional radiotherapy plan-
ning, DVHs are essential for assessing and optimizing dose distributions for the Principal
Target Volume and Organs at Risk. However, existing deep learning models for dose predic-
tion, while capable of generating accurate 3D dose distributions, often fail to integrate DVH
constraints fully [96]. This limitation reduces their utility in real-time treatment planning.

In previous work, deep learning approaches primarily focused on predicting dose distribu-
tions directly from patient imaging data, such as CT scans and anatomical contours of the
PTV and OARs. These methods typically rely on convolutional neural networks (CNNs), like
the Unet, trained with voxel-wise loss functions [113]. While successful in producing accu-
rate 3D dose maps, they generally treat DVH-related information as secondary, with little
attention given to adapting predictions based on these critical clinical metrics.

In the last section, we proposed integrating target DVH into the deep dose model to address
this gap. In this section, we extend prior approaches by proposing attention mechanisms
to integrate target DVH information more effectively into the dose prediction process. At-
tention mechanisms, widely adopted in domains such as natural language processing and
image recognition, enable models to focus on relevant features within the input data selec-
tively [89]. By leveraging attention, we aim to enhance the model’s capacity to dynamically
adapt its dose predictions following specified DVH constraints, providing a more precise and
clinically responsive framework for radiotherapy treatment planning.

This work evaluates three U-net-based architectures, including a novel model using a cross-
attention mechanism to incorporate DVH information into the dose prediction process di-
rectly. Our goal is to enhance the accuracy and adaptability of deep learning models for
dose prediction, ultimately enabling dosimetrists to have greater control over the treatment
planning process through DVH-guided model interactions.

Related work Previous studies have explored the application of attention mechanism for
dose prediction in radiotherapy planning. Osman et al., for example, developed an attention-
gated 3D U-Net architecture model to predict full 3D dose distribution [93]. Cros et al. inves-
tigated the combination of dense elements with attention mechanisms for 3D radiotherapy
dose prediction [4]. In contrast, our research uses the attention mechanism for its power in
mixing different data types. We used cross attention between DVH features and bottle neck

2Presented at SFRO 2024.
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compressed 3D data to predict clinically acceptable dose distributions. To our knowledge,
this innovative paradigm has not been previously explored in the literature.

6.2.2 Material and Methods
Patient Data and Preprocessing We again used the cohort of 168 patients from the
previous section who had undergone radiotherapy treatment. The dataset included patients
prescribed 62 Gy or 78 Gy on the PTV. The dataset was randomly split into 80% for training,
10% for validation, and 10% for testing. We collected the CT scans, PTV contours, and OAR
contours for each patient. The CT data was resampled to a voxel size of 0.5 × 0.5 × 0.5mm3

to standardize inputs across patients. As in the last section, we used the same box 120 ×
180× 180 mm3 centered on the PTV.

Model Architecture and Training The backbone architecture for all models in this
study is a 3D-convolutional Unet, a commonly used CNN for image-to-image translation
tasks, such as segmentation and dose prediction. Our U-net is of depth two, meaning
it performs two levels of down-sampling and up-sampling. The U-net outputs a 3D dose
prediction for each voxel within the patient’s anatomy. Details architecture diagrams can
be found in figure 6.3.

U-net 0 (Baseline) The first model, U-net 0 (architecture diagram can be found on figure
6.3a), serves as a baseline and does not incorporate target DVH information. It receives the
CT scan, PTV, and OAR contours as input and predicts the 3D dose distribution purely from
this spatial data.

U-net 1 (DVH with DAFT) The second model, U-net 1 (architecture diagram can be
found on figure 6.3b), incorporates DVH data using the DAFT approach, like in the previous
section. In this model, the target DVHs are provided as additional inputs, and the model is
trained to predict 3D dose distributions that match these target DVHs.

U-net 2 (DVH with Cross-Attention) Our novel contribution, U-net 2 (architecture
diagram can be found on figure 6.3c), integrates DVH data using a cross-attention mecha-
nism. In this architecture, the model takes queries from the 3D dose prediction and keys
and values from the target DVHs. The result of the 4-head attention mechanism is the same
shape as that of the 3D input. The cross-attention mechanism allows the model to adjust
its dose predictions dynamically based on the desired DVH information. The output of the
attention mechanism is re-injected into the U-net during the decoding process, modifying
the predicted dose map to match the target DVHs better.

Loss Function and Optimization The models were trained using a loss function that
combines voxel-wise MAE with an L1 loss on the DVH, designed to penalize deviations be-
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(a) U-net 0: no DVH information.
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(b) U-net 1: DVH with DAFT.
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Figure 6.3: Architecture diagrams of U-nets 0, 1 and 2.
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Metric Unet-0 Unet-1 Unet-2
3D Dose MAE (Gy) 3.093 2.254 2.210
Mean DVH Deviation (Gy) 1.942 1.051 0.930

Table 6.1: Models performances comparison.

tween the predicted and target DVHs. Incorporating the L1 loss on DVH significantly im-
proved the model’s convergence. The total loss function is expressed as:

Total Loss = α ·MAEvoxel + β · L1DVH

where α and β are hyper-parameters that control the relative contribution of the two terms.
For this study, we set both α and β to 1, based on performance observed on the valida-
tion set. However, future work could further optimize these parameters to enhance model
performance.

The models were trained using the Adam optimizer with a 10−4 learning rate. Using the
validation loss criterion, early stopping was applied to prevent overfitting and ensure robust
generalization.

6.2.3 Results
Evaluation Metrics The performance of the models was assessed using two primary
metrics. The first metric was the 3D Dose MAE, which measures the voxel-wise MAE be-
tween the predicted dose distributions and the corresponding ground truth values. The
second metric was the DVH deviation, calculated as the mean L1 deviation between the
predicted and target DVHs for both the Principal Target Volume (PTV) and Organs at Risk
(OARs). These metrics provide a comprehensive evaluation of the models’ accuracy in pre-
dicting dose distributions and adherence to clinical DVH constraints.

Models Performances The performance of the three models is summarized in Table 6.1.
Both U-net 1 and U-net 2, which incorporated DVH information, outperformed the baseline
U-net 0 across all metrics.

As shown, the inclusion of DVH data significantly reduced the MAE in the predicted dose
distributions. Unet-2, which used a cross-attention mechanism, showed the best overall
performance, with a minor error reduction compared to U-net 1.

Prescription Adaptability The ability of the models to adapt to varying prescriptions
was also evaluated. Similarly to the last section, U-net 0 struggled to predict the correct
dose when the prescription varied from its training distribution. Regardless of the actual
prescription, the model consistently predicted doses around 65Gy. In contrast, U-net 1 and
U-net 2 adapted their dose predictions to the provided DVHs, making them more versatile
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in clinical scenarios where the prescription may differ across patients. There were only a
few differences between the performances of U-net 1 and U-net 2.

6.2.4 Conclusions
This study re-demonstrates the feasibility of incorporating DVH data into deep-learning
models for radiotherapy dose prediction. We have marginally improved model performances
and adaptability by using an attention mechanism to integrate target DVHs. The cross-
attention mechanism, in particular, offers a novel way to align predicted dose distributions
with clinical goals flexibly.

Our findings indicate that this approach could facilitate the development of a more efficient
radiotherapy treatment planning workflow. In this proposed framework, dosimetrists would
focus primarily on creating standardized target DVH templates rather than manually ad-
justing dose distributions for each patient. These templates would serve as a foundation,
requiring minimal adjustments to accommodate individual patient-specific characteristics,
thereby streamlining the treatment planning process.

Designing a template for 3D dose distributions is not feasible, as 3D doses are highly patient-
specific and cannot be transferred between patients. In contrast, DVHs are more generaliz-
able and can be applied across different patients. This generalizability makes them suitable
for the proposed workflow, where template DVHs can be established and used with deep
learning-based dose prediction models guided by target DVH. This workflow could reduce
planning time and improve consistency across patients. Future work will explore incor-
porating more complex DVH structures and refining the attention mechanism to enhance
model interpretability and clinical usability.





Conclusion and Perspectives

Abstract

This dissertation explores the automation of radiotherapy dosimetry, focusing on op-
timization techniques to improve treatment planning. Dosimetry, a crucial step in ra-
diotherapy, directly impacts both the efficacy and safety of cancer treatments. We in-
vestigated various optimization methods and proposed three automation frameworks: a
partially automated approach that allows clinicians to make adjustments, a fully auto-
mated reinforcement learning system that eliminates manual intervention, and a deep
dose-based framework that uses deep learning while providing flexibility for manual
adjustments through target dose-volume histograms.

This concluding chapter summarizes the main findings and limitations of the present
manuscript. We end in a prospective assessment of the long-term implications for the
field of radiotherapy. This chapter aims to provide a comprehensive overview of the
potential impact of our findings on the advancement of radiotherapy practices in the
future.
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7.1 Main findings
This manuscript has explored critical advancements in radiotherapy, particularly in dose
optimization. Dosimetry remains a crucial step in RT as it directly determines the treatment
plan delivered to patients. Dosimetry optimization ensures the delivery of the prescribed
radiation dose to cancerous tissues while sparing healthy structures. However, it is also
the stage where the efficacy and safety of the treatment are defined. Thus, improvements
in this step have profound clinical importance.

Through this dissertation, we have investigated various optimization techniques. First, we
focused on constructing loss functions and comparing optimization algorithms. We have
further proposed multiple avenues for automating the dosimetry process to enhance treat-
ment efficiency and reduce manual workloads.

Partially Automated Clustering-based Framework The partially automated clustering-
based framework proposes a partially automated system for dosimetry, where human in-
tervention remains integral to the process. The model automates most of the dose calcu-
lation but leaves room for manual adjustments by clinicians and dosimetrists. This half-
automated approach allows dosimetrists to refine or modify the treatment plan based on
their expertise, maintaining the traditional workflow while benefiting from automation to
save time and improve efficiency. The clustering strategy facilitated a more profound com-
prehension of the interrelationships between doses.

Fully Automated Reinforcement Learning with Classical Optimization Approach
The fully automated reinforcement learning combined with the classical optimization ap-
proach takes the automation further. Within this paradigm, dosimetrists are entirely super-
seded, obviating the need for their input. The system calculates and generates the optimal
treatment plan based on predefined clinical constraints and objectives without requiring
post-calculation adjustments by the dosimetrist. Our innovative approach is distinguished
by its direct learning from historical dose distributions. This system eliminates the reliance
on ill-defined metrics that often fail to represent the clinical acceptability of treatment plans
accurately. We have empirically demonstrated the adaptability of this framework to diverse
clinical settings, only requiring retraining to work with new institutions. This paradigm
entirely obviates the need for dosimetrist intervention, streamlining the treatment planning
process.

Fully Automated Deep Dose Based Scheme It is also essential to recognize that
automating the dosimetry process does not mean replicating every step a human would
take. Instead, a more strategic approach involves re-engineering the workflow to optimize its
suitability for machine learning or artificial intelligence models. Automation can streamline
workflows by eliminating unnecessary complexity and standardizing treatment protocols,
thus making them more efficient and reliable.
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The fully automated target-DVH-guided deep dose scheme approaches offer a more balanced
solution by integrating deep learning models into the fully automated dosimetry process.
These systems generate dose distributions and include the flexibility for post-calculation
manual adjustments via the modification of target DVHs. The deep learning models are
trained on large datasets of treatment plans and dose distributions, learning the relation-
ships between anatomical structures, dose distribution, and dose-volume histograms. This
knowledge enables the models to make accurate dose predictions while still allowing clini-
cally adapted dose predictions via modification of the target DVH. Moreover, a single model
is needed, and the DVH prompt can be adapted for each center instead of creating a new
model from scratch, as in the fully automated scheme.

One of the key advantages of these frameworks is that they offer both full automation and
clinician control. Dosimetrists can adjust the automated dose plan when needed, provid-
ing oversight absent from the previous approaches. We anticipate that clinicians will make
frequent adjustments during the early stages of adoption. Later, the need for manual inter-
vention should gradually decrease, as confidence in the deep learning models grows, and
dosimetrists get better prompt the model with target DVH. Over time, clinicians may find the
model’s initial dose recommendations sufficiently accurate, requiring manual optimization
only in exceptional cases, significantly different to the training data.

This gradual adoption mirrors the process observed with auto-contouring systems in radio-
therapy. Initially, clinicians made numerous adjustments to the auto-generated contours,
but as the technology matured, they began accepting the contours with fewer and fewer
modifications. We expect a similar trajectory with automated dosimetry systems, leading to
higher acceptance in the clinical community.

7.2 Limitations
Partially Automated Clustering-based Framework The partially automated clustering-
based framework, while innovative, comes with a significant hurdle: It would require a
change in the current clinical workflow. Clinicians and dosimetrists have well-established
practices; altering these routines may face resistance. Even with partial automation, shift-
ing habits could be difficult, as it demands additional time and training. Since radiotherapy
professionals often rely on established methods they trust, adopting this hybrid model on
a broad scale might be unlikely.

Fully Automated Reinforcement Learning with Classical Optimization Approach
While this full automation represents a significant leap in efficiency, it also presents chal-
lenges. The system’s rigidity can become a source of frustration for clinicians, as it does
not allow for minor manual adjustments to the dose distribution, which are often neces-
sary in practice. When clinicians encounter situations where the automated plan requires
slight modifications, they must start the entire process from scratch. This lack of flexibility
could lead to dissatisfaction and reluctance to adopt the framework, as dosimetrists may
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Figure 7.1: Comparison of classical versus deep dose
frameworks for the creation of treatment plans.

value the ability to fine-tune treatment plans. Therefore, this approach may face significant
resistance in clinical practice despite its theoretical appeal.

Fully Automated Deep Dose Based Scheme The fully automated deep dose-based
scheme represents a more ambitious approach, aiming at enabling full automation and
human fine-tuned plan creation. The clinical implementation and acceptance of the target
DVH framework by healthcare professionals remain to be established. Further evaluation
and validation in real-world settings are necessary to ensure its effectiveness and integration
into routine clinical practice.

From Research to Product While our research has introduced several promising method-
ologies, there are inherent limitations. One key challenge is transitioning from prof of con-
cept models to real-world clinical applications. Models developed in this research, partic-
ularly those based on deep learning, are designed with a research-oriented focus and are
relatively small in scale. To realize the full potential of the target DVH deep dose frame-
works, there is a clear need to transition from the current research-oriented models to
high-resolution, clinically viable products. This transformation will require collaboration
between researchers, software developers, and clinical practitioners to ensure the models
are scalable, robust, and compatible with existing clinical infrastructures.

Future work The target dose-volume histogram represents the most promising avenue.
Prioritizing the development and refinement of target DVH-based approaches is our recom-
mendation for future research.
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7.3 Long-Term Impact on Radiotherapy
Treatments Standardization The widespread adoption of automated dosimetry will
benefit patients and clinicians in the long term. By standardizing treatment planning across
centers, these systems will ensure that all patients, regardless of location, have access to
high-quality treatments based on the best clinical practices. This standardization is partic-
ularly important for isolated clinics or those with limited specialist availability, where clin-
icians may lack experience dealing with rare or complex cases. Ultimately, this standard-
ization will lead to more equitable access to advanced radiotherapy treatments, improving
patient outcomes on a global scale.

Conclusion The research presented in this thesis has demonstrated the importance and
feasibility of automating the dosimetry process in radiotherapy. While there are challenges
in clinical adoption and model scalability, the future of radiotherapy will undoubtedly move
toward more automated systems. Among the various frameworks explored, the deep dose
approach provides the most promising pathway for effective automation, offering a blend
of full automation and manual adjustment flexibility. This balance will likely encourage
gradual adoption, leading to a new era in radiotherapy where treatment planning is faster,
more precise, and universally accessible.
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